自然语言处理中的文本聚类:揭示模式和见解

一、介绍

        在自然语言处理(NLP)领域,文本聚类是一种基本且通用的技术,在信息检索、推荐系统、内容组织和情感分析等各种应用中发挥着关键作用。文本聚类是将相似文档或文本片段分组为簇或类别的过程。这项技术使我们能够发现隐藏的模式、提取有价值的见解并简化大量非结构化文本数据。在本文中,我们将深入研究 NLP 中的文本聚类领域,探讨其重要性、方法论和实际应用。

自然语言处理中的文本聚类就像浩瀚文字海洋中的指南针,引导我们到达模式和见解的隐藏海岸。

二、文本聚类的重要性

        文本聚类是文本分析中的关键步骤,因为它可以从非结构化文本数据中提取有意义的结构和见解。以下是文本聚类在 NLP 中至关重要的几个关键原因:

  1. 信息检索:搜索引擎和推荐系统使用文本聚类来有效地分类和检索相关信息。它可以帮助用户找到与其查询语义相关的文档或内容。
  2. 内容组织:在内容管理中,集群有助于对大量文档档案进行分类和组织。它有助于创建层次结构,使内容更易于导航。
  3. 主题发现:研究人员和分析师使用文本聚类来识别文档集合中的新兴趋势、主题或模式。这对于跟踪新闻、社交媒体或学术研究特别有用。
  4. 情绪分析:以情绪为重点的文本聚类有助于衡量公众对各种主题的看法。这对于企业和政府了解公众的看法并相应地调整策略来说非常宝贵。

三、文本聚类方法

        文本聚类涉及多种方法和途径。以下是一些常用的技术:

  1. K-Means 聚类: K-Means 是一种广泛使用的聚类算法。它通过最小化文档与簇质心之间的距离来将文档分配给簇。每个簇代表一组相似的文档。
  2. 层次聚类:层次聚类创建树状的簇结构。它可以是凝聚性的(自下而上),也可以是分裂性的(自上而下)。这种方法提供了集群的层次结构,提供了更细致的数据视图。
  3. DBSCAN(基于密度的噪声应用空间聚类): DBSCAN 可以根据数据点的密度有效识别不同形状和大小的聚类。它还可以发现数据中的异常值和噪音。
  4. 潜在狄利克雷分配(LDA): LDA是一种用于主题建模的概率模型。它发现文档集合中的主题,并为每个文档分配这些主题的分布。
  5. 词嵌入: Word2Vec 和 Doc2Vec 等技术可创建单词和文档的向量表示,从而更容易根据向量空间中的相似性对文本数据进行聚类。

四、实际应用

文本聚类在各个领域都有应用,提供有价值的见解和解决方案。一些现实世界的例子包括:

  1. 新闻聚合:新闻网站根据主题对文章进行聚合,为读者提供更有组织性和个性化的新闻源。
  2. 电子商务:在线零售商使用文本聚类对产品进行分组,使客户更容易找到相关商品并改进推荐。
  3. 学术研究:研究人员使用文本聚类来识别研究趋势,这可以帮助发现新的探索领域。
  4. 社交媒体分析:企业使用通过文本聚类进行的情感分析来衡量客户满意度并调整营销策略。

五、代码

        使用数据集和绘图创建用于文本聚类的完整 Python 代码示例可能相当广泛,但我可以为您提供一个简化的示例,使用流行的 scikit-learn 库进行文本聚类,并使用 Matplotlib 进行可视化。在此示例中,我们将使用 20 个新闻组数据集,其中包含分类为 20 个不同主题的新闻组文档。

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import TruncatedSVD
import matplotlib.pyplot as plt

# Load the 20 Newsgroups dataset
newsgroups = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))

# Vectorize the text data using TF-IDF
tfidf_vectorizer = TfidfVectorizer(max_df=0.5, max_features=1000, stop_words='english')
tfidf_matrix = tfidf_vectorizer.fit_transform(newsgroups.data)

# Reduce dimensionality using LSA (Latent Semantic Analysis)
lsa = TruncatedSVD(n_components=2)
lsa_matrix = lsa.fit_transform(tfidf_matrix)

# Perform K-Means clustering
k = 20  # Number of clusters (based on the 20 Newsgroups categories)
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(lsa_matrix)

# Visualize the clusters
labels = kmeans.labels_
cluster_centers = kmeans.cluster_centers_

plt.figure(figsize=(10, 8))
plt.scatter(lsa_matrix[:, 0], lsa_matrix[:, 1], c=labels, cmap='viridis')
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1,], s=200, c='red')
plt.title("Text Clustering with K-Means")
plt.show()

        在此代码中:

  1. 我们加载 20 个新闻组数据集,其中包含来自不同新闻组的文本文档。
  2. 我们使用 TF-IDF(词频-逆文档频率)向量化将文本数据转换为数值特征。
  3. LSA(潜在语义分析)用于将维度降低到 2D 以实现可视化目的。
  4. K-Means 聚类的聚类数量等于新闻组类别的数量 (k = 20)。
  5. 最后,我们在 2D 空间中绘制文本文档,并根据聚类对它们进行着色。红点代表聚类中心。

        请注意,这是一个简化的示例,在实践中,您可能需要预处理文本数据、调整超参数并使用更高级的技术来获得更好的聚类结果。

六、结论

        NLP 中的文本聚类是一种多功能且必不可少的工具,用于从非结构化文本数据中提取有价值的见解和结构。它的方法论,包括 K-Means、层次聚类和 LDA,使我们能够发现模式、对相似文档进行分组并组织内容。它的实际应用有很多,从新闻聚合到电子商务中的情绪分析。随着 NLP 的不断发展,文本聚类仍将是利用文本数据的力量推动各个领域的明智决策和解决方案的基石。

人工智能
机器学习
深度学习
数据科学
自然语言处理

埃弗顿戈梅德 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/123876.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MySQL中表格的自我复制,与复制表格

先创建一个空表,my_tab01 CREATE TABLE my_tab01(id INT ,name VARCHAR(32),sal DOUBLE,job VARCHAR(32),deptno INT); SELECT * FROM my_tab01;准备一张有数据的表格: 将另一张表格的数据插入到my_tab01的表格中: -- 演示如何自我复制 --…

Spring Boot 请求/actuator/beans 无法访问 返回404

问题复现 在保证项目加入了spring-boot-starter-actuator依赖,并成功启动后。通过浏览器进行访问,返回如下图结果: 问题排查 1. 查看日志 从日志中可以看到基于路径’/actuator’下只暴露了一个端点 2. 访问http://localhost:8080/actua…

Kafka -- 架构、分区、副本

1、Kafka的架构: 1、producer:消息的生产者 2、consumer:消息的消费者 3、broker:kafka集群的服务者,一个broker就是一个节点,主要是负责处理消息的读、写的请求和存储消息。在kafka cluster中包含很多的br…

Android平台上执行C/C++可执行程序,linux系统编程开发,NDK开发前奏。

Android平台上执行C/C可执行程序,linux系统编程开发,NDK开发前奏准备。 1.下载NDK,搭建NDK开发环境 下载地址 https://developer.android.com/ndk/downloads 下载过程中点击下面箭头的地方,点击鼠标右键,复制好下载…

基于SSM的劳务外包管理系统的设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

8.spark自适应查询-AQE之自适应调整Shuffle分区数量

目录 概述主要功能自适应调整Shuffle分区数量原理默认环境配置修改配置 结束 概述 自适应查询执行(AQE)是 Spark SQL中的一种优化技术,它利用运行时统计信息来选择最高效的查询执行计划,自Apache Spark 3.2.0以来默认启用该计划。…

用趋动云GPU部署自己的Stable Diffusion

注:本文内容来自于对DataWhale的开源学习项目——免费GPU线上跑AI项目实践的学习,参见:Docs,引用了多处DataWhale给出的教程。 1.创建项目 1)进入趋动云用户工作台,在当前空间处选择注册时系统自动生成的…

前端-选中DOM定位源代码

用到的工具:react-dev-inspector 使用流程 根据react-dev-inspector文档进行配置 安装 yarn add --dev react-dev-inspector配置:在根目录下配置Inspector import { createRoot } from react-dom/client import { Inspector } from react-dev-inspe…

工业物联网模块应用之砂芯库桁架机器人远程无线控制

一、应用背景 在铸管车间无线技改项目中,客户需要构建智能化砂芯库,要求各库存的规格、数量、位置坐标等数据实时可显。此外,还需具备自动入库及出库功能,用于将出炉后的成摞砂芯及时码放至砂芯库的预设位置,当离心机…

Netty 是如何利用EventLoop实现千万级并发的

经过前面几篇文章的介绍,我们掌握了 Netty 的 5 个核心组件,但是有了这 5 个核心组件 Netty 这个工厂还是无法很好的运转,因为缺少了一个最核心的组件:EventLoop,它 是 Netty 中最最核心的组件,也是 Netty …

李开复创业公司零一万物开源迄今为止最长上下文大模型:Yi-6B和Yi-34B,支持200K超长上下文

本文来自DataLearnerAI官方网站:李开复创业公司零一万物开源迄今为止最长上下文大模型:Yi-6B和Yi-34B,支持200K超长上下文 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051699285770532 零一万物(01.AI…

【Azure 架构师学习笔记】-Azure Storage Account(5)- Data Lake layers

本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Storage Account】系列。 接上文 【Azure 架构师学习笔记】-Azure Storage Account(4)- ADF 读取Queue Storage 前言 不管在云还是非云环境中, 存储是IT 系统的其中一个核心组件。在…

SQL 注入漏洞详解

SQL 注入漏洞详解 漏洞描述 sql注入漏洞是指恶意用户在应用与数据库交互的地方利用非法的操作获取数据库内容从以下两点分析: 没有对用户输入的数据进行充分的过滤和验证,导致一些用户利用此漏洞向数据库插入恶意sql语句非法请求数据库从而获得一些敏感数据在与数…

Linux生成随机密码和根据密码批量生成用户

cat /dev/urandom|tr -dc [:alnum:]|head -c20 生成20位数字字母的随机密码。 /dev/urandom生成随机数,tr -dc [:alnum:] 保留所有数字和字母,head -c20保留前20位。 使用原生的Linux命令生成可以说是极度安全的,也适用于批量用户生成的情况…

Chrome 插件开发 V3版本 跨域处理

插件构成 chrome 插件通常由以下几部分组成: manifest.json:相当于插件的 meta 信息,包含插件的名称、版本号、图标、脚本文件名称等,这个文件是每个插件都必须提供的,其他几部分都是可选的。 background script&…

学习pytorch15 优化器

优化器 官网如何构造一个优化器优化器的step方法coderunning log出现下面问题如何做反向优化? 官网 https://pytorch.org/docs/stable/optim.html 提问:优化器是什么 要优化什么 优化能干什么 优化是为了解决什么问题 优化模型参数 如何构造一个优化器…

react组件通信

目录 前言: 父子组件通信 子父组件通信 兄弟组件通信 总结 前言: React是一种流行的JavaScript库,用于构建现代化的、高性能的Web应用程序。在React中,组件是代码的构建块。组件通信是React中一个非常重要的概念,…

普洱茶上市?澜沧古茶通过港股聆讯

近日,澜沧古茶成功通过港交所聆讯,随后在11月7日披露了相关资料集。该公司即将在港交所主板上市,此次上市由中信建投国际和招商证券国际担任联席保荐人。据了解,澜沧古茶或将成为内地茶企第一股,也将成为“普洱茶第一股…

YOLOX: Exceeding YOLO Series in 2021(2021.8)

文章目录 AbstractIntroduction介绍前人的工作提出问题解决 YOLOXYOLOX-DarkNet53Implementation detailsYOLOv3 baselineDecoupled headStrong data augmentationAnchor-freeMulti positivesSimOTAEnd-to-end YOLOOther BackbonesModified CSPNet in YOLOv5Tiny and Nano dete…

Vscode Vim自动切换

在VsCode里安装了Vim插件,由于Vim插件存在Normal和Insert两种模式,会需要经常性的按shift切换中英文,太过麻烦,本文介绍一下如何通过im-select来解决。 首先先确保自己的电脑里装有英文语言包,win10系统下可以使用Win…