竞赛 身份证识别系统 - 图像识别 深度学习

文章目录

  • 0 前言
  • 1 实现方法
    • 1.1 原理
        • 1.1.1 字符定位
        • 1.1.2 字符识别
        • 1.1.3 深度学习算法介绍
        • 1.1.4 模型选择
    • 2 算法流程
    • 3 部分关键代码
  • 4 效果展示
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 毕业设计 图像识别 深度学习 身份证识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 实现方法

1.1 原理

1.1.1 字符定位

在Android移动端摄像头拍摄的图片是彩色图像,上传到服务器后为了读取到身份证上的主要信息,就要去除其他无关的元素,因此对身份证图像取得它的灰度图并得到二值化图。

对身份证图像的的二值化有利于对图像内的信息的进一步处理,可以将待识别的信息更加突出。在OpenCV中,提供了读入图像接口函数imread,
首先通过imread将身份证图像读入内存中:

id_card_img = cv2.imread(path_img)

之后再调用转化为灰度图的接口函数cvtColor并给它传入参数COLOR_BGR2GRAY,它就可以实现彩色图到灰度图的转换,代码如下

gray_id_card_img = cv2.cvtColor(color_img, cv2.COLOR_BGR2GRAY)
preprocess_bg_mask = PreprocessBackgroundMask(boundary)

转化为二值化的灰度图后图像如图所示:

在这里插入图片描述

转换成灰度图之后要进行字符定位,通过每一行进行垂直投影,就可以找到所有字段的位置,具体如下:

在这里插入图片描述
然后根据像素点起始位置,确定字符区域,然后将字符区域一一对应放入存放字符的列表中:

 vertical_peek_ranges = extract_peek_ranges_from_array(
                vertical_sum,
                minimun_val=40,
                minimun_range=1)
            vertical_peek_ranges2d.append(vertical_peek_ranges)

最后的效果图如图所示:

在这里插入图片描述

1.1.2 字符识别

身份证识别中,最重要的是能够识别身份证图像中的中文文字(包括数字和英文字母),这里学长采用深度学习的方式来做:

1)身份证图像涉及个人隐私,很难获取其数据训练集。针对此问题,我采用获取身份证上印刷体汉字和数字的数据训练集的方法,利用Python图像库(PIL)将13类汉字印刷体字体转换成6492个类别,建立了较大的字符训练集;

2)如何获取身份证图片上的字符是在设计中一个重要问题。我采用水平和垂直投影技术,首先对身份证图像进行预处理,然后对图片在水平和垂直方向上像素求和,区分字符与空白区域,完成了身份证图像中字符定位与分割工作,有很好的切分效果;

3)在模型训练中模型的选择与设计是一个重要的环节,本文选择Lenet模型,发现模型层次太浅,然后增加卷积层和池化层,设计出了改进的深层Lenet模型,然后采用Caffe深度学习工具对模型进行训练,并在训练好的模型上进行测试,实验表明,模型的测试精度达到96.2%。

1.1.3 深度学习算法介绍

深度学习技术被提出后,发展迅速,在人工智能领域取得了很好的成绩,越来越多优秀的神经网络也应运而生。深度学习通过建立多个隐层的深层次网络结构,比如卷积神经网络,可以用来研究并处理目前计算机视觉领域的一些热门的问题,如图像识别和图像检索。

深度学习建立从输入数据层到高层输出层语义的映射关系,免去了人工提取特征的步骤,建立了类似人脑神经网的分层模型结构。深度学习的示意图如图所示

在这里插入图片描述

1.1.4 模型选择

在进行网络训练前另一项关键的任务是模型的选择与配置,因为要保证模型的精度,要选一个适合本文身份证信息识别的网络模型。


首先因为汉字识别相当于一个类别很多的图片分类系统,所以先考虑深层的网络模型,优先采用Alexnet网络模型,对于汉字识别这种千分类的问题很合适,但是在具体实施时发现本文获取到的数据训练集每张图片都是6464大小的一通道的灰度图,而Alexnet的输入规格是224224三通道的RGB图像,在输入上不匹配,并且Alexnet在处理像素较高的图片时效果好,用在本文的训练中显然不合适。

其次是Lenet模型,没有改进的Lenet是一个浅层网络模型,如今利用这个模型对手写数字识别精度达到99%以上,效果很好,在实验时我利用在Caffe下的draw_net.py脚本并且用到pydot库来绘制Lenet的网络模型图,实验中绘制的原始Lenet网络模型图如图所示,图中有两个卷积层和两个池化层,网络层次比较浅。

在这里插入图片描述

2 算法流程

在这里插入图片描述

3 部分关键代码



    cv2_color_img = cv2.imread(test_image)
        ##放大图片
        resize_keep_ratio = PreprocessResizeKeepRatio(1024, 1024)
        cv2_color_img = resize_keep_ratio.do(cv2_color_img)    
        ##转换成灰度图
        cv2_img = cv2.cvtColor(cv2_color_img, cv2.COLOR_RGB2GRAY)
        height, width = cv2_img.shape
        ##二值化  调整自适应阈值 使得图像的像素值更单一、图像更简单
        adaptive_threshold = cv2.adaptiveThreshold(
            cv2_img, ##原始图像
            255,     ##像素值上限
            cv2.ADAPTIVE_THRESH_GAUSSIAN_C,  ##指定自适应方法Adaptive Method,这里表示领域内像素点加权和
            cv2.THRESH_BINARY,  ##赋值方法(二值化)
            11,  ## 规定领域大小(一个正方形的领域)
            2)   ## 常数C,阈值等于均值或者加权值减去这个常数
        adaptive_threshold = 255 - adaptive_threshold
    
        ## 水平方向求和,找到行间隙和字符所在行(numpy)
        horizontal_sum = np.sum(adaptive_threshold, axis=1)
        ## 根据求和结果获取字符行范围
        peek_ranges = extract_peek_ranges_from_array(horizontal_sum)
        vertical_peek_ranges2d = []
        for peek_range in peek_ranges:
            start_y = peek_range[0]  ##起始位置
            end_y = peek_range[1]    ##结束位置
            line_img = adaptive_threshold[start_y:end_y, :]
            ## 垂直方向求和,分割每一行的每个字符
            vertical_sum = np.sum(line_img, axis=0)
            ## 根据求和结果获取字符行范围
            vertical_peek_ranges = extract_peek_ranges_from_array(
                vertical_sum,
                minimun_val=40, ## 设最小和为40
                minimun_range=1)  ## 字符最小范围为1
            ## 开始切割字符
            vertical_peek_ranges = median_split_ranges(vertical_peek_ranges)
            ## 存放入数组中
            vertical_peek_ranges2d.append(vertical_peek_ranges)
    
        ## 去除噪音,主要排除杂质,小的曝光点不是字符的部分
        filtered_vertical_peek_ranges2d = []
        for i, peek_range in enumerate(peek_ranges):
            new_peek_range = []
            median_w = compute_median_w_from_ranges(vertical_peek_ranges2d[i])
            for vertical_range in vertical_peek_ranges2d[i]:
                ## 选取水平区域内的字符,当字符与字符间的间距大于0.7倍的median_w,说明是字符
                if vertical_range[1] - vertical_range[0] > median_w*0.7:
                    new_peek_range.append(vertical_range)
            filtered_vertical_peek_ranges2d.append(new_peek_range)
        vertical_peek_ranges2d = filtered_vertical_peek_ranges2d


        char_imgs = []
        crop_zeros = PreprocessCropZeros()
        resize_keep_ratio = PreprocessResizeKeepRatioFillBG(
            norm_width, norm_height, fill_bg=False, margin=4)
        for i, peek_range in enumerate(peek_ranges):
            for vertical_range in vertical_peek_ranges2d[i]:
                ## 划定字符的上下左右边界区域
                x = vertical_range[0]
                y = peek_range[0]
                w = vertical_range[1] - x
                h = peek_range[1] - y
                ## 生成二值化图
                char_img = adaptive_threshold[y:y+h+1, x:x+w+1]
                ## 输出二值化图
                char_img = crop_zeros.do(char_img)
                char_img = resize_keep_ratio.do(char_img)
                ## 加入字符图片列表中
                char_imgs.append(char_img)
        ## 将列表转换为数组
        np_char_imgs = np.asarray(char_imgs)
     
        ## 放入模型中识别并返回结果
        output_tag_to_max_proba = caffe_cls.predict_cv2_imgs(np_char_imgs)
    
        ocr_res = ""
        ## 读取结果并展示
        for item in output_tag_to_max_proba:
            ocr_res += item[0][0]
        print(ocr_res.encode("utf-8"))
    
        ## 生成一些Debug过程产生的图片
        if debug_dir is not None:
            path_adaptive_threshold = os.path.join(debug_dir,
                                                   "adaptive_threshold.jpg")
            cv2.imwrite(path_adaptive_threshold, adaptive_threshold)
            seg_adaptive_threshold = cv2_color_img
    
    #        color = (255, 0, 0)
    #        for rect in rects:
    #            x, y, w, h = rect
    #            pt1 = (x, y)
    #            pt2 = (x + w, y + h)
    #            cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)
    
            color = (0, 255, 0)
            for i, peek_range in enumerate(peek_ranges):
                for vertical_range in vertical_peek_ranges2d[i]:
                    x = vertical_range[0]
                    y = peek_range[0]
                    w = vertical_range[1] - x
                    h = peek_range[1] - y
                    pt1 = (x, y)
                    pt2 = (x + w, y + h)
                    cv2.rectangle(seg_adaptive_threshold, pt1, pt2, color)
                
            path_seg_adaptive_threshold = os.path.join(debug_dir,
                                                       "seg_adaptive_threshold.jpg")
            cv2.imwrite(path_seg_adaptive_threshold, seg_adaptive_threshold)
    
            debug_dir_chars = os.path.join(debug_dir, "chars")
            os.makedirs(debug_dir_chars)
            for i, char_img in enumerate(char_imgs):
                path_char = os.path.join(debug_dir_chars, "%d.jpg" % i)
                cv2.imwrite(path_char, char_img)


4 效果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/122460.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux 进程终止和等待

目录 一&#xff1a;进程常见的退出方法 1. main 函数返回值 2.调用 exit 3.调用 _exit 二&#xff1a;异常问题 三&#xff1a;进程等待 1.概念 2.进程等待的必要性 3.进程等待的方法 <1>&#xff1a;wait --- 系统调用 <2>&#xff1a;waitpid 进程…

如何利用SD-WAN优化跨国企业访问SAP的性能

随着企业数字化的创新发展和应用系统部署规模的增长&#xff0c;企业传统网络已经无法满足应用系统对大上行带宽、确定性时延、高可靠和精准优化等能力的要求&#xff0c;因此在现有传统网络基础上&#xff0c;企业也需要不断变革WAN技术&#xff0c;以更稳定、更高效、更安全的…

【PHP网页应用】MySQL数据库增删改查 基础版

使用PHP编写一个简单的网页&#xff0c;实现对MySQL数据库的增删改和展示操作 页面实现在index.php&#xff0c;其中basic.php为没有css美化的原始人版本 函数实现在database.php 目录 功能基本实现版 CSS美化版 basicindex.php index.php database.php 代码讲解 功能基…

Flink SQL Window TopN 详解

Window TopN 定义&#xff08;⽀持 Streaming&#xff09;&#xff1a; Window TopN 是特殊的 TopN&#xff0c;返回结果是每⼀个窗⼝内的 N 个最⼩值或者最⼤值。 应⽤场景&#xff1a; TopN 会出现中间结果&#xff0c;出现回撤数据&#xff0c;Window TopN 不会出现回撤数据…

Bean——IOC(Github上有代码)

源码 https://github.com/cmdch2017/Bean_IOC.git 获取Bean对象 BeanFactory Bean的作用域 第三方Bean需要用Bean注解 比如消息队列项目中&#xff0c;需要用到Json的消息转换器&#xff0c;这是第三方的Bean对象&#xff0c;所以不能用Component&#xff0c;而要用Bean …

SpringCloudGateway--Sentinel限流、熔断降级

目录 一、概览 二、安装Sentinel 三、微服务整合sentinel 四、限流 1、流控模式 ①直接 ②关联 ③链路 2、流控效果 ①快速失败 ②Warm Up ③排队等待 五、熔断降级 1、慢调用比例 2、异常比例 3、异常数 一、概览 SpringCloudGateway是一个基于SpringBoot2.x的…

国外访问学者/博士后留学人员反诈骗指南

访问学者/博士后/联合培养博士人员出国后&#xff0c;对当地环境及政策不熟悉&#xff0c;需要提高防范意识&#xff0c;为此&#xff0c;知识人网小编特整理这篇反诈骗指南&#xff0c;提醒留学人员防微杜渐、未雨绸缪。 近日&#xff0c;多国使馆发布相关提醒&#xff1a;不法…

DAY47 198.打家劫舍 + 213.打家劫舍II + 337.打家劫舍 III

198.打家劫舍 题目要求&#xff1a;你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自动报警…

WordPress页脚配置备案号

进入后台管理页面 后台管理页面地址一般是&#xff1a;域名/wp-admin 在指定位置加入代码 点击外观 -> 主题文件编辑器 在右侧的文件中选择 footer.php,[注意&#xff1a;上方的主题需要是你自己选择的对应的主题]在 </footer>标签这一行的上一行中加入代码 <di…

学习在echarts中优化数据视图dataView样式带表格样式,支持复制功能

学习在echarts中优化数据视图dataView样式 带表格样式 toolbox里有个dataView视图模式&#xff0c;里面的数据没有对整&#xff0c;影响展示效果&#xff0c;情形如下&#xff1a; 像这种标题跟数据没有整齐对应上&#xff0c;看起来乱 改问题解决方案为&#xff0c;option 》…

风力等级划分

图片来源于网络

Spark 基础知识点

Spark 基础 本文来自 B站 黑马程序员 - Spark教程 &#xff1a;原地址 什么是Spark 什么是Spark 1.1 定义&#xff1a;Apache Spark是用于大规模数据&#xff08;large-scala data&#xff09;处理的统一&#xff08;unified&#xff09;分析引擎 Spark最早源于一篇论文 Re…

【IP固定】地平线开发板如何实现重启IP地址不变

文章目录 1 背景2 临时解决方案3 真正解决方案 1 背景 重新刷了地平线工具链OE包中BSP20230417的系统镜像&#xff0c;结果只能串口连接&#xff0c;无法实现网口连接&#xff0c;串口连接后&#xff0c;发现eth0和eth1的IP竟然是一样的&#xff0c;如下图所示 还挺少见的。 …

单目标应用:粒子群优化算法(PSO)求解微电网优化MATLAB

一、微网系统运行优化模型 微电网优化模型介绍&#xff1a; 微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客 二、粒子群优化算法&#xff08;PSO&#xff09;求解微电网优化 &#xff08;1&#xff09;部分代码 close all; clear ; clc; global P_load; %电负荷 gl…

低代码平台的探究与分析

目录 1.低代码行业现状 2.产品分析 2.1可视化应用开发 2.2流程管理 2.3特别支持整个平台源码合作 3.架构和技术 3.1技术栈 4.规划和展望 低代码平台&#xff08;Low-code Development Platform&#xff09;是一种让开发者通过拖拽和配置&#xff0c;而非传统的手动编写…

物联网水表有什么弊端吗?

物联网水表作为新一代智能水表&#xff0c;虽然在很大程度上提高了水资源的管理效率&#xff0c;但也存在一定的弊端。在这篇文章中&#xff0c;我们将详细讨论物联网水表的弊端&#xff0c;以帮助大家更全面地了解这一技术。 一、安全隐患 1.数据泄露&#xff1a;物联网水表通…

12.(vue3.x+vite)组件间通信方式之$attrs与$listeners

前端技术社区总目录(订阅之前请先查看该博客) 示例效果 在vue3中的$attrs的变化 $ listeners已被删除合并到$ attrs中。 $ attrs现在包括class和style属性。 也就是说在vue3中$ listeners不存在了。vue2中$listeners是单独存在的。 在vue3 $attrs包括class和style属性, vue…

运动蓝牙耳机哪个品牌好?推荐五款好用的运动耳机

​无论你是赛跑者、自行车手还是健身爱好者&#xff0c;运动耳机绝对是你追求极致、超越自我的最佳搭档。它不仅具备优秀的音质和耐用的性能&#xff0c;更重要的是&#xff0c;它可以激发你的运动激情&#xff0c;让你的运动生活更加充满动力。推荐以下几款不错的运动耳机给大…

网站引流绝技:如何通过外链持续给网站带来高质量流量

做网站的人&#xff0c;不论是写文章还是搞外链&#xff0c;最终都是希望能获得更多的流量。既然是为了搞来流量和收入&#xff0c;你可能还不知道有一种方法既能搞来外链还能带来源源不断的高质量流量。 这个方法我在8年前就已经掌握&#xff0c;而且至今我仍认为它是一种有效…

OSPF下的MGRE实验

一、实验要求 1、R1-R3-R4构建全连的MGRE环境 2、R1-R5-R6建立hub-spoke的MGRE环境&#xff0c;其中R1为中心 3、R1-R3...R6均存在环回网段模拟用户私网&#xff0c;使用OSPF使全网可达 4、其中R2为ISP路由器&#xff0c;仅配置IP地址 二、实验拓扑图 三、实验配置 1、给各路…