Redis系列-Redis过期策略以及内存淘汰机制【6】

目录

  • Redis系列-Redis过期策略以及内存淘汰机制【6】
    • redis过期策略
    • 内存淘汰机制
    • 算法
      • LRU算法
      • LFU
    • 其他场景对过期key的处理
    • FAQ
      • 为什么不用定时删除策略?
    • Ref

个人主页: 【⭐️个人主页】
需要您的【💖 点赞+关注】支持 💯


Redis系列-Redis过期策略以及内存淘汰机制【6】

在这里插入图片描述

redis主要是基于内存来进行高性能、高并发的读写操作的。但既然内存是有限的,例如redis就只能使用10G,你写入了20G。这个时候就需要清理掉10G数据,保留10G数据。那应该保留哪些数据,清除哪些数据,为什么有些数据明明过期了,怎么还占用着内存?这都是由redis的过期策略来决定的。

在这里插入图片描述

redis过期策略

​ redis的过期策略就是:定期删除 + 惰性删除

定期删除,指的是redis默认是每隔100ms就随机抽取一些设置了过期时间的key,检查是否过期,如果过期就删除。

🅰️ 100ms怎么来的?
在Redis的配置文件redis.conf中有一个属性"hz",默认为10

表示1s执行10次定期删除,即每隔100ms执行一次,可以修改这个配置值。

在这里插入图片描述
🅱️ 随机抽取一些检测,一些是多少?

同样是由redis.conf文件中的maxmemory-samples属性决定的,默认为5。
在这里插入图片描述

在Redis的配置文件redis.conf中有一个属性"hz",默认为10,表示1s执行10次定期删除,即每隔100ms执行一次,可以修改这个配置值。

​ 假设redis里放了10W个key,都设置了过期时间,你每隔几百毫秒就检查全部的key,那redis很有可能就挂了,CPU负载会很高,都消耗在检查过期的key上。注意,这里不是每隔100ms就遍历所有设置过期时间的key,那样就是一场性能灾难。实际上redis是每隔100ms就随机抽取一些key来检查和删除的。

​ 定期删除可能会导致很多过期的key到了时间并没有被删除掉。这个时候就可以用到惰性删除了。

惰性删除 是指在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间并且已经过期了,此时就会删除,不会给你返回任何东西。

​ 但即使是这样,依旧有问题。如果定期删除漏掉了很多过期的key,然后你也没及时去查,也就没走惰性删除。此时依旧有可能大量过期的key堆积在内存里,导致内存耗尽。

​ 这个时候就需要内存淘汰机制了。

内存淘汰机制

redis.conf中有一行配置 ,该配置就是配内存淘汰策略

# maxmemory-policy volatile-lru

redis·内存淘汰机制有以下几个:

  1. noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。这个一般很少用。
  2. allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key,这个是最常用的。
  3. allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。
  4. volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。
  5. volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
  6. volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。
  7. allkeys-lfu,淘汰整个键值中最少使用的键值,这也就是我们常说的LRU算法。 【Redis4.0】
  8. volatile-lfu,淘汰所有设置了过期时间的键值中最少使用的键值【Redis4.0】

而在Redis4.0版本中又新增了2种淘汰策略:

allkeys-lfu,淘汰整个键值中最少使用的键值,这也就是我们常说的LRU算法。
volatile-lfu,淘汰所有设置了过期时间的键值中最少使用的键值
通过上面的内存淘汰策略可以看出,以 allkeys- 开头的表示从所有key中进行数据淘汰,而以 volatile- 开头的会从设置了过期时间的key中进行数据淘汰。

算法

  • LRU(Least Recently Used,最近最少使用),根据最近被使用的时间,离当前最远的数据优先被淘汰;
  • LFU(Least Frequently Used,最不经常使用),在一段时间内,缓存数据被使用次数最少的会被淘汰。

LRU算法

​ 上面的内存淘汰机制中,用到的是LRU算法。什么是LRU算法?LRU算法其实就是上面说的最近最少使用策略。

实现LRU算法,大概的思路如下:

1.​ 维护一个有序单链表,越靠近链表尾部的节点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表:
2. 如果此数据之前已经被缓存在链表中了,我们遍历得到这个数据对应的节点,并将其从原来的位置删除,然后再插入到链表的头部。
3. 如果此数据没有在缓存链表中,又可以分为两种情况:
- 如果此时缓存未满,则将此节点直接插入到链表的头部;
- 如果此时缓存已满,则链表尾节点删除,将新的数据节点插入链表的头部。

​ 这就就实现了LRU算法。

​ 当然我们也可以基于Java现有的数据结构LinkedHashMap手撸一个。LinkHashMap本质上是一个Map与双向链表的结合,比起上述的单链表,效率更高。代码如下:

class LRUCache<K, V> extends LinkedHashMap<K, V> {
    private final int CACHE_SIZE;

    /**
     * 传递进来最多能缓存多少数据
     *
     * @param cacheSize 缓存大小
     */
    public LRUCache(int cacheSize) {
        // true 表示让 linkedHashMap 按照访问顺序来进行排序,最近访问的放在头部,最老访问的放在尾部。
        super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);
        CACHE_SIZE = cacheSize;
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
        // 当 map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据。
        return size() > CACHE_SIZE;
    }
}

LFU

在Redis LFU算法中,为每个key维护了一个计数器,每次key被访问的时候,计数器增大,计数器越大,则认为访问越频繁。但其实这样会有问题,

1、因为访问频率是动态变化的,前段时间频繁访问的key,之后也可能很少再访问(如微博热搜)。为了解决这个问题,Redis记录了每个key最后一次被访问的时间,随着时间的推移,如果某个key再没有被访问过,计数器的值也会逐渐降低。

2、新生key问题,对于新加入缓存的key,因为还没有被访问过,计数器的值如果为0,就算这个key是热点key,因为计数器值太小,也会被淘汰机制淘汰掉。为了解决这个问题,Redis会为新生key的计数器设置一个初始值。

上面说过在Redis LRU算法中,会给每个key维护一个大小为24bit的属性字段,代表最后一次被访问的时间戳。在LFU中也维护了这个24bit的字段,不过被分成了16 bits与8 bits两部分:

16 bits 8 bits
±-------------------±-----------+

  • Last decr time | LOG_C |

±-------------------±----------+

其中高16 bits用来记录计数器的上次缩减时间,时间戳,单位精确到分钟。低8 bits用来记录计数器的当前数值。

在redis.conf配置文件中还有2个属性可以调整LFU算法的执行参数:lfu-log-factor、lfu-decay-time。其中lfu-log-factor用来调整计数器counter的增长速度,lfu-log-factor越大,counter增长的越慢。lfu-decay-time是一个以分钟为单位的数值,用来调整counter的缩减速度。

其他场景对过期key的处理

1、快照生成RDB文件时

过期的key不会被保存在RDB文件中。

2、服务重启载入RDB文件时

Master载入RDB时,文件中的未过期的键会被正常载入,过期键则会被忽略。Slave 载入RDB 时,文件中的所有键都会被载入,当主从同步时,再和Master保持一致。

3、AOF 文件写入时

因为AOF保存的是执行过的Redis命令,所以如果redis还没有执行del,AOF文件中也不会保存del操作,当过期key被删除时,DEL 命令也会被同步到 AOF 文件中去。

4、重写AOF文件时

执行 BGREWRITEAOF 时 ,过期的key不会被记录到 AOF 文件中。

5、主从同步时

Master 删除 过期 Key 之后,会向所有 Slave 服务器发送一个 DEL命令,Slave 收到通知之后,会删除这些 Key。

Slave 在读取过期键时,不会做判断删除操作,而是继续返回该键对应的值,只有当Master 发送 DEL 通知,Slave才会删除过期键,这是统一、中心化的键删除策略,保证主从服务器的数据一致性。

FAQ

为什么不用定时删除策略?

定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.

Ref

https://blog.csdn.net/yuanlong122716/article/details/104420880

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/122083.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

zookeeper:服务器有几种状态?

四种&#xff1a; looking(选举中&#xff09;、leading(leader)、following( follower)、 observer(观察者角色&#xff09;

挑战100天 AI In LeetCode Day06(热题+面试经典150题)

挑战100天 AI In LeetCode Day06&#xff08;热题面试经典150题&#xff09; 一、LeetCode介绍二、LeetCode 热题 HOT 100-82.1 题目2.2 题解 三、面试经典 150 题-83.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站&#xff0c;提供各种算法和数据结构的题目&am…

直面LED Driver测试挑战,助力显示屏行业变中求变!

杭州亚运会开幕式惊艳世界&#xff0c;引发社会各界一致赞誉&#xff01;在大气浪漫的舞台效果中&#xff0c;LED屏、裸眼3D屏凭借“硬核科技”出圈&#xff0c;为大家带来科技、活力、诗意的“中国式浪漫”观赏体验。而这美轮美奂的LED呈现效果背后&#xff0c;主要依靠的是LE…

Spring Cloud LoadBalancer 负载均衡策略与缓存机制

目录 1. 什么是 LoadBalancer &#xff1f; 2. 负载均衡策略的分类 2.1 常见的负载均衡策略 3. 为什么要学习 Spring Cloud Balancer &#xff1f; 4. Spring Cloud LoadBalancer 内置的两种负载均衡策略 4.1 轮询负载均衡策略&#xff08;默认的&#xff09; 4.2 随机负…

实用篇-Git

一、Git初识 git是一个分布式版本控制工具&#xff0c;主要用于管理开发过程中的源代码文件(Java类、xml文件&#xff0c;html文件页面等)&#xff0c;通过git仓库来对这些文件进行存储和管理 git仓库分为 本地仓库&#xff1a;开发人员自己电脑上的git仓库 远程仓库&#…

野火霸天虎 STM32F407 学习笔记_4 构建库函数尝试;使用固件库点亮 LED 灯

构建库函数 创建一个通用的模板&#xff0c;后面写程序直接使用这个模板。 $ ls Mode LastWriteTime Length Name ---- ------------- ------ ---- d----- 2023/11/8 23:27 Libraries d----- …

grafana 密码忘记怎么重置

1.重置密码的命令&#xff1a; grafana-cli admin reset-admin-password 新的密码

【miniconda+jupyter环境安装】

minicondajupyter环境安装 下载miniconda创建第二个环境修改jupyternotebook的默认路径配置下源&#xff0c;下载快一点安装数据科学常用包先写到这儿&#xff01;拜拜~ 下载miniconda 网址&#xff1a;https://docs.conda.io/en/latest/miniconda.html 运行下载安装&#xff…

数据库SQL

数据库&SQL 数据库基本概念数据库DataBase定义 数据库管理系统(DBMS)定义在JAVA项目中与数据库的结合数据库管理系统中常见的概念库与表的关系 SQL数据类型数字类型浮点类型字符类型TEXT类型日期类型 SQL语言的分类DDL:数据定义语言修改表结构的注意事项 DML:数据操作语言D…

高级运维学习(十四)Zabbix监控(一)

一 监控概述 1 监控的目的 &#xff08;1&#xff09;报告系统运行状况 每一部分必须同时监控内容包括吞吐量、反应时间、使用率等 &#xff08;2&#xff09;提前发现问题 进行服务器性能调整前&#xff0c;知道调整什么找出系统的瓶颈在什么地方 2 监控的资源类别 …

达梦数据库答案

1、 创建数据库实例&#xff0c;到/dm8/data下&#xff0c;数据库名&#xff1a;DEMO&#xff0c;实例名DEMOSERVER&#xff08;10分&#xff09; [dmdbadmServer ~]$ cd /dm8/tool [dmdbadmServer tool]$ ./dbca.sh1、 簇大小32&#xff0c;页大小16&#xff0c;登录密码&…

sm2加密算法

sm2是一种非对称加密算法。在非对称加密中&#xff0c;加密和解密使用的是不同的密钥对&#xff0c;分别是公钥和私钥。SM2算法是由中国国家密码管理局制定的一种椭圆曲线非对称加密算法&#xff0c;用于数字签名、密钥协商等安全通信场景。 这里使用hutool工具类 Hutool 支持对…

uni-app小程序,基于vue实现电商商城

目录 一、前言 二、项目效果图 1.首页 2.分类 1.一级分类 ​ 2.二级分类 3.刷选、动态模拟加载数据 3.购物车 4.我的 ​5.商品详情页 6.提交订单&#xff08;立即购买&#xff09; 7.地址管理 8.提交订单成功 9.登录 10.注册 三、代码实现 1.项目结构截图 uni-app…

【python海洋专题三十九】海洋指数画法--折线图样式三--不同颜色的线条

【python海洋专题三十九】海洋指数画法–折线图样式三–不同颜色的线条 数据:AMO_index 图像展示: 图片 往期推荐 图片 【python海洋专题一】查看数据nc文件的属性并输出属性到txt文件 【python海洋专题二】读取水深nc文件并水深地形图 【python海洋专题三】图像修饰之画…

万界星空科技MES系统软件体系架构及应用

MES系统是数字化车间的核心。MES通过数字化生产过程控制&#xff0c;借助自动化和智能化技术手段&#xff0c;实现车间制造控制智能化、生产过程透明化、制造装备数控化和生产信息集成化。生产管理MES系统主要包括车间管理系统、质量管理系统、资源管理系统及数据采集和分析系统…

Android项目升级到AndroidX

1、 2、 然后报错了&#xff1a; The gradle plugin version in your project build.gradle file needs to be set to at least com.android.tools.build:gradle:3.2.0 in order to migrate to AndroidX. 修改gradle版本 31报错了就用30.0.0了 3、 提示备份、然后执行do re…

06、SpringBoot+微信支付 -->商户定时查订单状态、用户取消订单(关闭订单API)、查询订单API--到微信支付平台查询订单

目录 Native 下单、取消订单订单功能完善需求1&#xff1a;商户定时查单前端代码&#xff1a;后端代码&#xff1a;测试&#xff1a;swagger 测试&#xff1a; 需求2&#xff1a;用户取消订单&#xff08;关闭订单API&#xff09;需求&#xff1a;代码&#xff1a;前端&#xf…

漏刻有时百度地图API实战开发(2)文本标签显示和隐藏的切换开关

漏刻有时百度地图API实战开发(1)华为手机无法使用addEventListener click 的兼容解决方案漏刻有时百度地图API实战开发(2)文本标签显示和隐藏的切换开关漏刻有时百度地图API实战开发(3)自动获取地图多边形中心点坐标漏刻有时百度地图API实战开发(4)显示指定区域在移动端异常的解…

知了汇智主题讲座走进四川轻化工大学

2011年&#xff0c;Netscape创始人马克安德森一句“软件正在吞噬世界”掀起热浪&#xff0c;随着云计算、大数据、人工智能等技术的日趋成熟&#xff0c;我们发现吞噬当下世界的是数字化技术&#xff0c;而非软件。 数字化技术一方面改变着国家、企业、个人之间的竞争规则&…

SOME/IP 协议介绍(二)

1. SOME/IP header 出于互操作性的原因&#xff0c;所有SOME/IP的实现都应具有相同的标头布局如图1中显示。字段按传输顺序呈现&#xff0c;即左上方的字段首先进行传输。在接下来的章节中&#xff0c;将描述不同的标头字段及其用途。 1.1. IP地址/端口号 图1中的布局显示了在…