【面试题】20个常见的前端算法题,你全都会吗?

现在面试中,算法出现的频率越来越高了,大厂基本必考

今天给大家带来20个常见的前端算法题,重要的地方已添加注释,如有不正确的地方,欢迎多多指正💕

 大厂面试题分享 面试题库

前后端面试题库 (面试必备) 推荐:★★★★★

地址:前端面试题库  web前端面试题库 VS java后端面试题库大全

1、两数之和

题目: 给定一个数组 nums 和一个目标值 target,在该数组中找出和为目标值的两个数

输入: nums: [8, 2, 6, 5, 4, 1, 3] ; target:7

输出: [2, 5]

// 时间复杂度O(n)、 空间复杂度O(n)
function twoNumAdd(arr, target) {
  if (Array.isArray(arr)) {
    // 使用map将遍历过的数字存起来,空间换时间
    let map = {};
    for (let i = 0; i < arr.length; i++) {
      // 从map中查找是否有key 等于 target-nums[i],如果有,则条件成立,返回结果
      if (map[target - arr[i]] !== undefined) {
        return [target - arr[i], arr[i]];
      } else {
        // 条件不成立,将该值存起来
        map[arr[i]] = i;
      }
    }
  }
  return [];
}
复制代码

2、三数之和

题目: 给定一个数组nums,判断 nums 中是否存在三个元素a,b,c,使得 a + b + c = target,找出所有满足条件且不重复的三元组合

输入: nums: [5, 2, 1, 1, 3, 4, 6] ;target:8

输出: [[1, 1, 6], [1, 2, 5], [1, 3, 4]]

// 用`双端指针`的方式,将三数之和转化为两数之和
function findThree(arr, target) {
  // 先将数组从小到大排序
  arr.sort((a, b) => a - b))
  let result = [];
  for (let i = 0; i < arr.length; i++) {
    // 跳过重复的arr[i]值, 比如[2, 1, 1],跳过第二个1
    if (i && arr[i] === arr[i - 1]) continue;
    let left = i + 1;
    let right = arr.length - 1;
    
    // 双端指针left、right
    while (left < right) {
      let sum = arr[i] + arr[left] + arr[right];
      if (sum > target) {
        right--;
      } else if (sum < target) {
        left++;
      } else {
        // 先取arr[left],然后left++, 两步合成一步;arr[right--]同样的逻辑
        result.push([arr[i], arr[left++], arr[right--]]);
        while (arr[left] === arr[left - 1]) {
          // 跳过重复的arr[left]值,
          left++;
        }
        while (arr[right] === arr[right + 1]) {
          // 跳过重复的arr[right]值
          right--;
        }
      }
    }
  }
  return result;
}
复制代码

3、版本号排序

题目: 输入一组版本号,输出从大到小的排序

输入: ['2.1.0.1', '0.402.1', '10.2.1', '5.1.2', '1.0.4.5']

输出: ['10.2.1', '5.1.2', '2.1.0.1', '1.0.4.5', '0.402.1']

function versionSort(arr) {
  return arr.sort((a, b) => {
    let i = 0;
    const arr1 = a.split(".");
    const arr2 = b.split(".");
    while (true) {
      // 取出相同位置的数字
      const s1 = arr1[i];
      const s2 = arr2[i];
      i++;
      // 若s1 或 s2 不存在,说明相同的位置已比较完成,接下来比较arr1 与 arr2的长度,长的版本号大
      if (s1 === undefined || s2 === undefined) {
        return arr2.length - arr1.length;
      }
      if (s1 === s2) continue;
      // 比较相同位置的数字大小
      return s2 - s1;
    }
  });
}
复制代码

4、第一个不重复的字符

题目: 输入一个字符串,找到第一个不重复字符的下标

输入: 'abcabcde'

输出: 6

// 时间复杂度O(n)、 空间复杂度O(n)
function findOneStr(str) {
  if (!str) return -1;
  // 使用map存储每个字符出现的次数
  let map = {};
  let arr = str.split("");
  arr.forEach(item => {
    let val = map[item];
    // val为undefined时,表示未存储,map[item] = 1;否则map[item] = val + 1
    map[item] = val ? val + 1 : 1;
  });
  // 再遍历一遍找到出现1次的下标
  for (let i = 0; i < arr.length; i++) {
    if (map[arr[i]] == 1) {
      return i;
    }
  }
  return -1;
}
复制代码

5、字符串所有排列组合

题目: 输入一个字符串,打印出该字符串中,所有字符的排列组合

输入: 'abc'

输出: ['abc', 'acb', 'bca', 'bac', 'cab', 'cba']

/**
 * 利用回溯算法,计算所有字符串的组合
 * @param {array} list - 字符串列表
 * @param {array} result - 最终的结果
 * @param {string} current - 当前的字符串
 * @param {string} temp - 当前固定的字符
*/
function stringGroup(list = [], result = [], current = "", temp = "") {
  current += temp;
  if (list.length === 0) {
    // 递归的出口,将对应结果添加到list中
    return result.push(current);
  }
  for (let i = 0; i < list.length; i++) {
    // 每次递归 固定第一个字符
    temp = list.shift();
    stringGroup(list, result, current, temp);
    // 将删除的temp重新添加到queue尾部,实现将数组反转的效果,如[a,b,c]反转为[c,b,a]
    list.push(temp);
  }
  // 这里去重是解决str中有重复的字母,比如str为'aacd'
  return [...new Set(result)];
}
复制代码

6、冒泡排序

时间复杂度为O(n²),稳定排序算法

function bubbleSort(arr) {
  let length = arr.length;
  // 外层循环用控制 排序进行多少轮
  for (let i = 0; i < length; i++) {
    // 内层循环用于每一轮的数据比较
    // 注意j的长度范围 length - i - 1
    for (let j = 0; j < length - i - 1; j++) {
      // 相邻元素,大的放到后面
      if (arr[j] > arr[j + 1]) {
        // 交换位置
        [arr[j], arr[j + 1]] = [arr[j + 1], arr[j]];
      }
    }
  }
  return arr;
}
复制代码

7、选择排序

时间复杂度为O(n²),不稳定

function selectSort(arr) {
  // 定义index存储最小值的下标
  let index;
  // 外层循环用控制 排序进行多少轮
  for (let i = 0; i < arr.length - 1; i++) {
    index = i;
    // 内层循环用于每一轮的数据比较
    // 注意j的起始范围是 i + 1
    for (let j = i + 1; j < arr.length; j++) {
      // 寻找最小值
      if (arr[j] < arr[index]) {
        // 保存最小值的下标
        index = j;
      }
    }
    // 如果 index 不是目前的头部元素,则交换两者
    if (index !== i) {
      [arr[i], arr[index]] = [arr[index], arr[i]];
    }
  }
  return arr;
}
复制代码

8、插入排序

时间复杂度为O(n²),稳定

function insertSort(arr) {
  // 从第 2 个元素开始遍历序列
  for (let i = 1; i < arr.length; i++) {
    let j = i;
    //记录要插入的目标元素
    let target = arr[j];
    //从 target 所在位置向前遍历,直至找到一个比目标元素小的元素,目标元素插入到该元素之后的位置
    while (j > 0 && arr[j - 1] > target) {
      //移动前一个元素的位置,将其向后移动一个位置
      arr[j] = arr[j - 1];
      j--;
    }
    arr[j] = target;
  }
  return arr;
}
复制代码

9、快速排序

时间复杂度为O(nlogn),不稳定

function quickSort(list) {
  // 当list.length <= 1时,退出递归
  if (list.length <= 1) return list;
  // 找到中间节点
  let mid = Math.floor(list.length / 2);
  // 以中间节点为基准点,比该节点大的值放到right数组中,否则放到left数组中
  let base = list.splice(mid, 1)[0];
  let left = [];
  let right = [];
  list.forEach(item => {
    if (item > base) {
      right.push(item);
    } else {
      left.push(item);
    }
  });
  // 重新组合数组
  return quickSort(left).concat(base, quickSort(right));
}
复制代码

10、归并排序

时间复杂度为O(nlogn),稳定

function MergeSort(array) {
  let len = array.length;

  // 当每个子序列中仅有1个元素时返回
  if (len <= 1) {
    return array;
  }
  // 将给定的列表分为两半
  let num = Math.floor(len / 2);
  let left = MergeSort(array.slice(0, num));
  let right = MergeSort(array.slice(num, array.length));
  return merge(left, right);

  function merge(left, right) {
    let [l, r] = [0, 0];
    let result = [];
    // 从 left 和 right 区域中各个取出第一个元素,比较它们的大小
    while (l < left.length && r < right.length) {
      // 将较小的元素添加到result中,然后从较小元素所在的区域内取出下一个元素,继续进行比较;
      if (left[l] < right[r]) {
        result.push(left[l]);
        l++;
      } else {
        result.push(right[r]);
        r++;
      }
    }
    // 如果 left 或者 right 有一方为空,则直接将另一方的所有元素依次添加到result中
    result = result.concat(left.slice(l, left.length));
    result = result.concat(right.slice(r, right.length));
    return result;
  }
}
复制代码

11、列表转成树

题目: 输入一组列表如下,转化成树形结构

输入

[
  { id: 1, title: "child1", parentId: 0 },
  { id: 2, title: "child2", parentId: 0 },
  { id: 3, title: "child1_1", parentId: 1 },
  { id: 4, title: "child1_2", parentId: 1 },
  { id: 5, title: "child2_1", parentId: 2 }
]
复制代码

输出

tree=[
  {
    "id": 1,
    "title": "child1",
    "parentId": 0,
    "children": [
      {
        "id": 3,
        "title": "child1_1",
        "parentId": 1
      },
      {
        "id": 4,
        "title": "child1_2",
        "parentId": 1
      }
    ]
  },
  {
    "id": 2,
    "title": "child2",
    "parentId": 0,
    "children": [
      {
        "id": 5,
        "title": "child2_1",
        "parentId": 2
      }
    ]
  }
]
复制代码
function listToTree(data) {
  // 使用对象重新存储数据, 空间换时间
  let map = {};
  // treeData存储最后结果
  let treeData = [];
  // 遍历原始数据data,存到map中,id为key,值为数据
  for (let i = 0; i < data.length; i++) {
    map[data[i].id] = data[i];
  }
  // 遍历对象
  for (let i in map) {
    // 根据 parentId 找到的是父节点
    if (map[i].parentId) {
      if (!map[map[i].parentId].children) {
        map[map[i].parentId].children = [];
      }
      // 将子节点放到父节点的 children中
      map[map[i].parentId].children.push(map[i]);
    } else {
      // parentId 找不到对应值,说明是根结点,直接插到根数组中
      treeData.push(map[i]);
    }
  }
  return treeData;
}
复制代码

12、深度优先遍历

题目: 对树进行遍历,从第一个节点开始,遍历其子节点,直到它的所有子节点都被遍历完毕,然后再遍历它的兄弟节点

输入: 上文第11题生成的tree

输出: [1, 3, 4, 2, 5]

// 递归版本
function deepTree(tree, arr = []) {
  if (!tree || !tree.length) return arr;
  tree.forEach(data => {
    arr.push(data.id);
    // 遍历子树
    data.children && deepTree(data.children, arr);
  });
  return arr;
}

// 非递归版本
function deepTree(tree) {
  if (!tree || !tree.length) return;
  let arr = [];
  let stack = [];
  //先将第一层节点放入栈
  for (let i = 0, len = tree.length; i < len; i++) {
    stack.push(tree[i]);
  }
  let node;
  while (stack.length) {
    // 获取当前第一个节点
    node = stack.shift();
    arr.push(node.id);
    //如果该节点有子节点,继续添加进入栈顶
    if (node.children && node.children.length) {
      stack = node.children.concat(stack);
    }
  }
  return arr;
}
复制代码

13、广度优先遍历

题目: 以横向的维度对树进行遍历,从第一个节点开始,依次遍历其所有的兄弟节点,再遍历第一个节点的子节点,一层层向下遍历

输入: 上文第11题生成的tree

输出: [1, 2, 3, 4, 5]

function rangeTree(tree) {
  if (!tree || !tree.length) return;
  let arr = [];
  let node, list = [...tree];
  // 取出当前节点
  while ((node = list.shift())) {
    arr.push(node.id);
    node.children && list.push(...node.children);
  }
  return arr;
}
复制代码

14、树形结构查找节点

题目: 查找树形结构中符合要求的节点

输入
tree: 上文第11题生成的tree
func: data => data.title === "child2_1"

输出:{ id: 5, parentId: 2, title: "child2_1" }

/**
* 查找节点
* @param {array} tree - 树
* @param {function} func - 查找条件
* */
function findTreeNode(tree, func) {
  for (const data of tree) {
    // 条件成立 直接返回
    if (func(data)) return data;
    if (data.children) {
      const res = findTreeNode(data.children, func);
      // 结果存在再返回
      if (res) return res;
    }
  }
  return null;
}
// 测试
findTreeNode(tree, data => data.title === "child2_1")
复制代码

15、二叉查找树

题目: 判断一个数组,是否为某二叉查找树的前序遍历结果,二叉查找树特点是所有的左节点比父节点的值小,所有的右节点比父节点的值大

输入: [5, 3, 2, 1, 4, 6, 7, 8, 9]

输出: true

function preOrderOfBST(list) {
  if (list && list.length > 0) {
    // 前序遍历,第一个值为根节点
    var root = list[0];
    // 找到数组中,第一个比根节点大的节点,即为右子树的节点
    for (var i = 0; i < list.length; i++) {
      if (list[i] > root) {
        break;
      }
    }
    // 遍历右子树的节点,要求所有右子树的节点都比根节点大
    for (let j = i; j < list.length; j++) {
      if (list[j] < root) {
        return false;
      }
    }
    var left = true;
    // 同理,递归判断左子树是否符合二叉查找树的规则
    if (i > 1) {
      left = preOrderOfBST(list.slice(1, i + 1));
    }
    var right = true;
    // 递归判断右子树是否符合二叉查找树的规则
    if (i < list.length) {
      right = preOrderOfBST(list.slice(i, list.length));
    }
    // 左、右子树都符合要求,则是一个二叉查找树
    return left && right;
  }
}
复制代码

16、查找二叉树的路径

题目: 查找二叉树和为某一值的路径

输入: 二叉树结构如下,找到和为 11 的所有路径

输出: [[5, 3, 2, 1], [5, 6]]

/**
* 利用回溯算法,找到和为某一值的路径
* @param {object} node - 二叉树
* @param {number} num - 目标值
* @param {array} stack - 栈
* @param {number} sum - 当前路径的和
* @param {array} result - 存储所有的结果
* */
function findPath(node, num, stack = [], sum = 0, result = []) {
  stack.push(node.data);
  sum += node.data;

  // 找到所有的节点路径(包含叶子节点和子节点的所有情况之和)
  if (sum === num) {
    // if (!node.left && !node.right && sum === num) {  // 找到所有的叶子节点路径
    result.push(stack.slice());
  }
  if (node.left) {
    findPath(node.left, num, stack, sum, result);
  }
  if (node.right) {
    findPath(node.right, num, stack, sum, result);
  }
  // 回溯算法:不符合要求,退回来,换一条路再试
  // 叶子节点直接pop;子节点中的所有的节点递归完成后再pop
  stack.pop();
  return result;
}
复制代码

17、买卖股票问题

题目: 给定一个整数数组,其中第 i 个元素代表了第 i天的股票价格;
非负整数 fee 代表了交易股票的手续费用,求返回获得利润的最大值

输入: arr: [1, 12, 13, 9, 15, 8, 6, 16]; fee: 2

输出: 22

/**
 * 贪心算法求解
 * @param {array} list - 股票每天的价格列表
 * @param {number} fee - 手续费
 * */
function buyStock(list, fee) {
  // min为当前的最小值,即买入点
  let min = list[0],
    sum = 0;
  for (let i = 1; i < list.length; i++) {
    // 从1开始,依次判断
    if (list[i] < min) {
      // 寻找数组的最小值
      min = list[i];
    } else {
      // 计算如果当天卖出是否赚钱
      let temp = list[i] - min - fee;
      if (temp > 0) {
        // 赚钱 存数据
        sum += temp;
        // 关键代码:重新计算min,分两种情况,如果后面继续涨,则默认继续持有;若后面跌,则以后面的价格重新买入
        min = list[i] - fee;
      }
    }
  }
  return sum;
}
复制代码

18、斐波那契数列

题目: 从第3项开始,当前项等于前两项之和: 1 1 2 3 5 8 13 21 ……,计算第n项的值

输入: 10

输出: 89

// 使用动态规划,将复杂的问题拆分,也就是:`F(N) = F(N - 1) + F(N - 2)`,用数组将已经计算过的值存起来
function fib(n) {
  // 使用dp数组,将之前计算的结果存起来,防止栈溢出
  if (n < 2) return 1;
  let dp = [1, 1];
  for (let i = 2; i <= n; i++) {
    dp[i] = dp[i - 1] + dp[i - 2];
  }
  return dp[n - 1];
}
复制代码

19、滑动窗口最大值

题目: 给定一个数组 nums,有一个大小为 k 的滑动窗口,从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口中的k个数字。滑动窗口每次只向右移动一位,求返回滑动窗口最大值

输入: nums: [1,3,-1,-3,5,3,6,7]; k: 3

输出: [3, 3, 5, 5, 6, 7]

function maxSlidingWindow(nums, k) {
  // window存储当前窗口中数据的下标
  const window = [];
  // result存储窗口中的最大值
  const result = [];
  for (let i = 0; i < nums.length; i++) {
    if (i - window[0] > k - 1) {
      // 剔除窗口长度超出范围时左侧的最大值
      window.shift(); 
    }
    for (let j = window.length - 1; j >= 0; j--) {
      // 当前窗口的值依次和要插入的值做比较,如果小于要插入的值,剔除掉该值,直到window为空为止(保证window中最左侧的值为最大值)
      if (nums[window[j]] <= nums[i]) {
        window.pop();
      }
    }
    // 添加右侧新加入的值,插入新值时有两种情况:
    // 1、新值为最大值时,则window此时为空;
    // 2、新值不为最大值时,window已剔除掉比新值小的值
    window.push(i);
    if (i >= k - 1) {
      // 窗口是从0开始移动,当移动的距离大于等于目标范围后,以后再往后移动一次,就要写入当前窗口的最大值
      result.push(nums[window[0]]);
    }
  }
  return result;
}
复制代码

20、最长递增子序列

题目: 一个整数数组 nums,找到其中一组最长递增子序列的值

输入: [3,5,7,1,2,8]

输出: [3,5,7,8]

function lengthOfLIS(nums) {
  if (!nums.length) return 0;
  // 创建一个和原数组等长的数组dp,用来存储每一项的最长递增子序列
  // 比如[1,2,2] 表示第二项和第三项的最长递增子序列都为2
  let dp = new Array(nums.length).fill(1);
  // 双层for循环,每一项都和之前的所有项一一进行比较,计算出该项的最长递增子序列个数,存储到dp中
  for (let i = 0; i < nums.length; i++) {
    // 当前项依次和之前的每一项进行比较,累加出当前项的最长递增子序列
    for (let j = 0; j < i; j++) {
      if (nums[j] < nums[i]) {
        // 比较当前项已有的最大值和之前项最大值,比如当比较到第三项[1,2,2]时,如第三项比第二项大,所以第三项的计算结果为[1,2,3]
        dp[i] = Math.max(dp[i], dp[j] + 1);
      }
    }
  }
  // 取出一组最长递增子序列的具体值(注意:最长递增子序列有可能有多组值,这里是只取出其中一组值)
  // 找到dp中的最大值,该值就是nums的最长递增子序列的个数
  let max = Math.max(...dp);
  let result = [];
  for (let i = max; i >= 1; i--) {
    // 倒序遍历,根据长度获取对应的值
    findArrNode(dp, i, result, nums);
  }
  return result;
}
function findArrNode(dp, value, result, arr) {
  // 找到符合条件最后一项的下标,这样才能保证数组的顺序是正确的
  let index = dp.lastIndexOf(value);
  // 存储对应的值
  result.unshift(arr[index]);
  // 对dp进行截取,保证只取最大项之前的数据
  dp.length = index + 1;
}

 

大厂面试题分享 面试题库

前后端面试题库 (面试必备) 推荐:★★★★★

地址:前端面试题库  web前端面试题库 VS java后端面试题库大全

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/12175.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于RDF本体模型和图数据库实现知识查询与推理

基于RDF本体模型和图数据库实现知识查询与推理 基于RDF本体模型和图数据库实现知识查询与推理一、案例本体模型解释二、数据构建与查询 Here’s the table of contents: 基于RDF本体模型和图数据库实现知识查询与推理 本文主要使用ONgDB图数据库和Neosemantics组件&#xff0c;…

运行时内存数据区之虚拟机栈——操作数栈

操作数栈 每一个独立的栈帧中除了包含局部变量表以外&#xff0c;还包含一个后进先出(Last-In-First-Out)的操作数栈&#xff0c;也可以称之为表达式栈(Expression Stack)。操作数栈&#xff0c;在方法执行过程中&#xff0c;根据字节码指令&#xff0c;往栈中写入数据或提取数…

《花雕学AI》06:抢先体验ChatGPT的九个国内镜像站之试用与综合评测

最近ChatGPT持续大火&#xff0c;大家们是不是在网上看到各种和ChatGPT有趣聊天的截图&#xff0c;奈何自己实力不够&#xff0c;被网络拒之门外&#xff0c;只能眼馋别人的东西。看别人在体验&#xff0c;看别人玩&#xff0c;肯定不如自己玩一把舒服的啊。 上一期&#xff0…

视图的使用

为什么引入视图&#xff08;Views&#xff09; 如果您读过其他类似的书&#xff0c;可能会看到这些书在介绍视图时列举了许多引入视图的原因。其中认为最重要的原因是维护数据的独立性。那么什么是数据的独立性呢&#xff1f; 早期信息系统的设计与开发多采用模块驱动方式&am…

如何使用Win10搭建我的世界Minecraft服务器

简单几步在windwos搭建我的世界服务器,并通过cpolar工具将本地服务暴露到公网连接 1. Java环境搭建 以windows10系统为例&#xff0c;配置java环境&#xff0c;搭建我的世界服务器,下载最新版java版本 Java Downloads | Oracle 选择exe文件&#xff0c;下载完成后双击安装包…

从Hive源码解读大数据开发为什么可以脱离SQL、Java、Scala

从Hive源码解读大数据开发为什么可以脱离SQL、Java、Scala 前言 【本文适合有一定计算机基础/半年工作经验的读者食用。立个Flg&#xff0c;愿天下不再有肤浅的SQL Boy】 谈到大数据开发&#xff0c;占据绝大多数人口的就是SQL Boy&#xff0c;不接受反驳&#xff0c;毕竟大…

开发者笑疯了! LLaMa惊天泄露引爆ChatGPT平替狂潮,开源LLM领域变天

来源: 新智源 微信号&#xff1a;AI-era Meta的LLaMA模型开源&#xff0c;让文本大模型迎来了Stable Diffustion时刻。谁都没想 谁能想到&#xff0c;一次意外的LLaMA泄漏&#xff0c;竟点燃了开源LLM领域最大的创新火花。 一系列表现出色的ChatGPT开源替代品——「羊驼家族」…

全网最详细,Jmeter性能测试-性能基础详解,接口关联与编写Java脚本(三)

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 接口关联 接口关联…

水塘抽样解决随机选择问题

1.简介 水塘抽样是一系列的随机算法&#xff0c;其目的在于从包含n个项目的集合S中选取k个样本&#xff0c;其中n为一很大或未知的数量&#xff0c;尤其适用于不能把所有n个项目都存放到内存的情况。最常见例子为Jeffrey Vitter在其论文中所提及的算法R。 2.算法步骤&#xff1…

机器学习算法系列(三)

机器学习算法之–对数几率回归&#xff08;逻辑斯蒂回归&#xff09;算法 上个算法&#xff08;算法系列二&#xff09;介绍了如何使用线性模型进行回归学习&#xff0c;但若要做的是分类任务&#xff0c;则需要找一个单调可微函数将分类任务的真实标记y与线性回归模型的预测值…

一次etcd变更引发的惨案

问题描述 在做etcd的数据变更时候&#xff0c;etcd在组成集群的时候出现leader不断切换问题&#xff0c;导致集群不稳定&#xff0c;都面将不健康的etcd节点踢出&#xff0c;只剩etcd单节点&#xff0c;后面将踢出的etcd节点重新加入现有etcd&#xff0c;导致etcd集群奔溃&…

【故障诊断】基于 KPCA 进行降维、故障检测和故障诊断研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

快速搭建第一个SpringCloud程序

目录 1、Spring Boot项目脚手架快速搭建 1.1 生成工程基本配置 1.2 生成工程。 1.3 导入开发工具&#xff08;此处为Idea&#xff09; 1.4 运行代码 1.5 验证是否能访问 2、Spring Cloud环境搭建 2.1 版本匹配问题 2.2 Spring Cloud环境测试 3、引入Eureka Server 3…

运行时内存数据区之虚拟机栈——局部变量表

这篇内容十分重要,文字也很多,仔细阅读后,你必定有所收获! 基本内容 与程序计数器一样&#xff0c;Java虚拟机栈&#xff08;Java Virtual Machine Stack&#xff09;也是线程私有的&#xff0c;它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型&#xf…

【从零开始学Skynet】基础篇(六):MySql数据库安装操作

游戏服务端的另一项重要功能是保存玩家数据&#xff0c;Skynet提供了操作MySQL数据库、MongoDB数据库的模块。1、数据库安装 首先安装Mysql服务器&#xff0c;打开终端输入如下指令&#xff1a; sudo apt-get install mysql-server 按下回车&#xff0c;输入密码后开始安装&a…

项目1实现login登录功能方案设计第三版

需求优化点:MySQL表常用功能模块实现方案index页面home页面需求 实现一个登录功能 实现的功能 注册(邮箱注册)登录(邮箱密码)重置密码查看操作记录(登录, 注册, 重置密码, 登出. 都算操作)登出在第2版的基础上进行优化:\ 优化点: VerificationCode(验证码储存库): 增加时间字段…

青藤首提“业安融合”理念,正式发布先进云安全方案CNAPP

4月18日&#xff0c;以“云时代&#xff0c;安全变了”为主题的2023年云安全高峰论坛在北京举行。会上&#xff0c;青藤首次提出“业安融合”理念&#xff0c;正式发布先进云安全方案CNAPP。 中国全面进入云和数字化时代 当前&#xff0c;全球已进入数字经济时代&#xff0c;…

前端自动化测试之葵花宝典

首先聊一下概念&#xff0c;Web 前端自动化测试是一种通过编写代码来自动化执行 Web 应用程序的测试任务的方法&#xff0c;它通常使用 JavaScript 和测试框架 (如 Selenium、Appium 等) 来实现。 Web 前端自动化测试的优点是可以提高测试效率、减少测试时间和测试成本&#x…

工业机器人远程监控解决方案

一、项目背景 随着我国科技不断进步发展和产业升级的不断进行&#xff0c;现阶段机器人应用在生产制造行业以及运输行业已经变得越来越广泛。工业机器人机构复杂、维护成本高&#xff0c;机器人应用的这一行业现状&#xff0c;对工业机器人生产企业的产品高品质服务能力提出了…

Mac远程控制工具有哪些

适用于Mac的远程控制工具有很多&#xff0c;这里我们给大家列举五个常用软件。 1、Apple Remote Desktop 苹果自带远程桌面正如其名称所承诺的那样。作为 Apple 出品的应用程序&#xff0c;您可以想象它的配置和上手是多么容易。从 App Store 下载 Apple Remote Desktop 后&a…