工程(十四)——ubuntu20.04 PL-VINS

博主创建了一个科研互助群Q:772356582,欢迎大家加入讨论。这是一个科研互助群,主要围绕机器人,无人驾驶,无人机方面的感知定位,决策规划,以及论文发表经验,以方便大家很好很快的科研,少走弯路。欢迎在群里积极提问与回答,相互交流共同学习。

一、简介

PL-VINS是基于最先进的基于点的VINS- mono,开发的一种基于点和线特征的实时、高效优化的单目VINS方法。原始的 PL-VINS 是在ubuntu18.04基于opencv3去开发的。源码的下载地址:https://github.com/cnqiangfu/PL-VINS

我的配置:ubuntu20.04+opencv4.2+eigen3.3.7

更改好的代码如下,可直接用,需要修改mage_node_b.cpp的main函数第一行的地址

huashu996/Ubuntu20.04PL_VINS · GitHub

二、编译

如果你使用官方的代码,编译时候可能会遇到如下问题

mkdir -p ~/catkin_plvins/src 
cd catkin_plvins/src  //进入创建的catkin_plvins/src文件夹下
catkin_init_workspace    进行空间创建
 
cd ~/catkin_plvins    //在文件夹catkin_plvins下建立终端输入
catkin_make  //终端输入
source devel/setup.bash
echo $ROS_PACKAGE_PATH
		
//将代码下载到src目录下 或者执行下面代码
cd ~/catkin_plvins/src
git clone https://github.com/cnqiangfu/PL-VINS.git
//编译
cd ..  //回到文件夹catkin_plvins
catkin_make  
source devel/setup.bash
  • 将feature_tracker里面的Cmakelist修改一下:主要修改以下2处的路径

  • 打开catkin_plvins/src/PL-VINS/image_node_b文件下的CMakeLists.txt添加
set(CMAKE_CXX_STANDARD 14)

如果你配置正确,应该能够编译顺利通过

三、opencv4适配

但运行往往会出现如下图问题,对于每个问题我们一次解决

  • [image_node_b-7]  挂掉的原因是linefeature_tracker_node中只发布了归一化坐标,没有发布linefeature的startpoint和endpoint的像素坐标。

1.mage_node_b.cpp的main函数第一行的地址,修改原绝对地址。

 2.加入project函数

void project(cv::Point2f&  pt, cv::Mat  const&  k)
{
    pt.x=k.at<float>(0,0)*pt.x+k.at<float>(0,2);
    pt.y=k.at<float>(1,1)*pt.y+k.at<float>(1,2);
}

3.替换 

将下面两行        
cv::Point startPoint = cv::Point(line_feature_msg->channels[3].values[i], line_feature_msg->channels[4].values[i]);
cv::Point endPoint = cv::Point(line_feature_msg->channels[5].values[i], line_feature_msg->channels[6].values[i]);
替换
cv::Point2f  startPoint = cv::Point2f(line_feature_msg->points[i].x,line_feature_msg->points[i].y );
        project (startPoint,K_);
cv::Point2f  endPoint = cv::Point2f(line_feature_msg->channels[1].values[i],line_feature_msg->channels[2].values[i]);
  • [linefeature_tracker-4] 

此问题由于opencv和cv_bridge冲突的问题,因为在ubuntu20.04 cv_bridge是4,如果你使用opencv3那么将产生冲突,如果使用opencv4跑,代码本身又不支持opencv4所以需要更改。相应的解决方式也有两种:

1)把vins-mono代码全部改成opencv4的版本 或者  2)把cv_bridge改成opencv3版本。参考如下博客修改

【精选】Ubuntu20.04下成功运行VINS-mono_ubuntu vinsmono-CSDN博客

1.将所有包含opencv的Cmakelists.txt中opencv引入都换成4,如下

2.更新头文件使使用opencv4

(1)将camera_model包改成兼容opencv4

在camera_model包中的头文件Chessboard.h中添加
#include <opencv2/imgproc/types_c.h>
#include <opencv2/calib3d/calib3d_c.h>
在CameraCalibration.h中添加
#include <opencv2/imgproc/types_c.h>
#include <opencv2/imgproc/imgproc_c.h>

(2)将包中所有报错的头文件
#include <opencv/cv.h>
#include <opencv/highgui.h>
替换为
#include <opencv2/highgui.hpp>
#include <opencv2/cvconfig.h>

3.加入线特征检测函数

imgproc.hpp关于线特征的部分由于opencv4权限的问题无法使用了,这里只需要自己定义一个相同功能的头文件去把opencv3中的实现拷贝过去。在路径

PL-VINS/src/PL-VINS/feature_tracker/src/line_descriptor/src

创建一个my_lsd.hpp

//
// Created by fs on 2021/11/3.
// This file is my_lsd.hpp
//
//#include "opencv2/../../src/precomp.hpp"
#include "opencv2/imgproc.hpp"
//#include "opencv2/core/private.hpp"
#include <vector>

#define M_3_2_PI    (3 * CV_PI) / 2   // 3/2 pi
#define M_2__PI     (2 * CV_PI)         // 2 pi

#ifndef M_LN10
#define M_LN10      2.30258509299404568402
#endif

#define NOTDEF      double(-1024.0) // Label for pixels with undefined gradient.

#define NOTUSED     0   // Label for pixels not used in yet.
#define USED        1   // Label for pixels already used in detection.

#define RELATIVE_ERROR_FACTOR 100.0

const double DEG_TO_RADS = CV_PI / 180;

#define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))

struct edge
{
    cv::Point p;
    bool taken;
};



inline double distSq(const double x1, const double y1,
                     const double x2, const double y2)
{
    return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1);
}

inline double dist(const double x1, const double y1,
                   const double x2, const double y2)
{
    return sqrt(distSq(x1, y1, x2, y2));
}

// Signed angle difference
inline double angle_diff_signed(const double& a, const double& b)
{
    double diff = a - b;
    while(diff <= -CV_PI) diff += M_2__PI;
    while(diff >   CV_PI) diff -= M_2__PI;
    return diff;
}

// Absolute value angle difference
inline double angle_diff(const double& a, const double& b)
{
    return std::fabs(angle_diff_signed(a, b));
}

// Compare doubles by relative error.
inline bool double_equal(const double& a, const double& b)
{
    // trivial case
    if(a == b) return true;

    double abs_diff = fabs(a - b);
    double aa = fabs(a);
    double bb = fabs(b);
    double abs_max = (aa > bb)? aa : bb;

    if(abs_max < DBL_MIN) abs_max = DBL_MIN;

    return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
}

inline bool AsmallerB_XoverY(const edge& a, const edge& b)
{
    if (a.p.x == b.p.x) return a.p.y < b.p.y;
    else return a.p.x < b.p.x;
}

/**
 *   Computes the natural logarithm of the absolute value of
 *   the gamma function of x using Windschitl method.
 *   See http://www.rskey.org/gamma.htm
 */
inline double log_gamma_windschitl(const double& x)
{
    return 0.918938533204673 + (x-0.5)*log(x) - x
           + 0.5*x*log(x*sinh(1/x) + 1/(810.0*pow(x, 6.0)));
}

/**
 *   Computes the natural logarithm of the absolute value of
 *   the gamma function of x using the Lanczos approximation.
 *   See http://www.rskey.org/gamma.htm
 */
inline double log_gamma_lanczos(const double& x)
{
    static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
                           8687.24529705, 1168.92649479, 83.8676043424,
                           2.50662827511 };
    double a = (x + 0.5) * log(x + 5.5) - (x + 5.5);
    double b = 0;
    for(int n = 0; n < 7; ++n)
    {
        a -= log(x + double(n));
        b += q[n] * pow(x, double(n));
    }
    return a + log(b);
}
///

namespace cv {

    class myLineSegmentDetectorImpl CV_FINAL : public LineSegmentDetector
    {
    public:

/**
 * Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
 *
 * @param _refine       How should the lines found be refined?
 *                      LSD_REFINE_NONE - No refinement applied.
 *                      LSD_REFINE_STD  - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
 *                      LSD_REFINE_ADV  - Advanced refinement. Number of false alarms is calculated,
 *                                    lines are refined through increase of precision, decrement in size, etc.
 * @param _scale        The scale of the image that will be used to find the lines. Range (0..1].
 * @param _sigma_scale  Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
 * @param _quant        Bound to the quantization error on the gradient norm.
 * @param _ang_th       Gradient angle tolerance in degrees.
 * @param _log_eps      Detection threshold: -log10(NFA) > _log_eps
 * @param _density_th   Minimal density of aligned region points in rectangle.
 * @param _n_bins       Number of bins in pseudo-ordering of gradient modulus.
 */
        myLineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
                                double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
                                double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);

/**
 * Detect lines in the input image.
 *
 * @param _image    A grayscale(CV_8UC1) input image.
 *                  If only a roi needs to be selected, use
 *                  lsd_ptr->detect(image(roi), ..., lines);
 *                  lines += Scalar(roi.x, roi.y, roi.x, roi.y);
 * @param _lines    Return: A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line.
 *                          Where Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
 *                          Returned lines are strictly oriented depending on the gradient.
 * @param width     Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
 * @param prec      Return: Vector of precisions with which the lines are found.
 * @param nfa       Return: Vector containing number of false alarms in the line region, with precision of 10%.
 *                          The bigger the value, logarithmically better the detection.
 *                              * -1 corresponds to 10 mean false alarms
 *                              * 0 corresponds to 1 mean false alarm
 *                              * 1 corresponds to 0.1 mean false alarms
 *                          This vector will be calculated _only_ when the objects type is REFINE_ADV
 */
        void detect(InputArray _image, OutputArray _lines,
                    OutputArray width = noArray(), OutputArray prec = noArray(),
                    OutputArray nfa = noArray()) CV_OVERRIDE;

/**
 * Draw lines on the given canvas.
 *
 * @param image     The image, where lines will be drawn.
 *                  Should have the size of the image, where the lines were found
 * @param lines     The lines that need to be drawn
 */
        void drawSegments(InputOutputArray _image, InputArray lines) CV_OVERRIDE;

/**
 * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
 *
 * @param size      The size of the image, where lines1 and lines2 were found.
 * @param lines1    The first lines that need to be drawn. Color - Blue.
 * @param lines2    The second lines that need to be drawn. Color - Red.
 * @param image     An optional image, where lines will be drawn.
 *                  Should have the size of the image, where the lines were found
 * @return          The number of mismatching pixels between lines1 and lines2.
 */
        int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) CV_OVERRIDE;

    private:
        Mat image;
        Mat scaled_image;
        Mat_<double> angles;     // in rads
        Mat_<double> modgrad;
        Mat_<uchar> used;

        int img_width;
        int img_height;
        double LOG_NT;

        bool w_needed;
        bool p_needed;
        bool n_needed;

        const double SCALE;
        const int doRefine;
        const double SIGMA_SCALE;
        const double QUANT;
        const double ANG_TH;
        const double LOG_EPS;
        const double DENSITY_TH;
        const int N_BINS;

        struct RegionPoint {
            int x;
            int y;
            uchar* used;
            double angle;
            double modgrad;
        };

        struct normPoint
        {
            Point2i p;
            int norm;
        };

        std::vector<normPoint> ordered_points;

        struct rect
        {
            double x1, y1, x2, y2;    // first and second point of the line segment
            double width;             // rectangle width
            double x, y;              // center of the rectangle
            double theta;             // angle
            double dx,dy;             // (dx,dy) is vector oriented as the line segment
            double prec;              // tolerance angle
            double p;                 // probability of a point with angle within 'prec'
        };
        myLineSegmentDetectorImpl& operator= (const myLineSegmentDetectorImpl&); // to quiet MSVC

        /**
 * Detect lines in the whole input image.
 *
 * @param lines         Return: A vector of Vec4f elements specifying the beginning and ending point of a line.
 *                              Where Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
 *                              Returned lines are strictly oriented depending on the gradient.
 * @param widths        Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
 * @param precisions    Return: Vector of precisions with which the lines are found.
 * @param nfas          Return: Vector containing number of false alarms in the line region, with precision of 10%.
 *                              The bigger the value, logarithmically better the detection.
 *                                  * -1 corresponds to 10 mean false alarms
 *                                  * 0 corresponds to 1 mean false alarm
 *                                  * 1 corresponds to 0.1 mean false alarms
 */
        void flsd(std::vector<Vec4f>& lines,
                  std::vector<double>& widths, std::vector<double>& precisions,
                  std::vector<double>& nfas);

/**
 * Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
 *
 * @param threshold      The minimum value of the angle that is considered defined, otherwise NOTDEF
 * @param n_bins         The number of bins with which gradients are ordered by, using bucket sort.
 * @param ordered_points Return: Vector of coordinate points that are pseudo ordered by magnitude.
 *                       Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
 */
        void ll_angle(const double& threshold, const unsigned int& n_bins);

/**
 * Grow a region starting from point s with a defined precision,
 * returning the containing points size and the angle of the gradients.
 *
 * @param s         Starting point for the region.
 * @param reg       Return: Vector of points, that are part of the region
 * @param reg_angle Return: The mean angle of the region.
 * @param prec      The precision by which each region angle should be aligned to the mean.
 */
        void region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
                         double& reg_angle, const double& prec);

/**
 * Finds the bounding rotated rectangle of a region.
 *
 * @param reg       The region of points, from which the rectangle to be constructed from.
 * @param reg_angle The mean angle of the region.
 * @param prec      The precision by which points were found.
 * @param p         Probability of a point with angle within 'prec'.
 * @param rec       Return: The generated rectangle.
 */
        void region2rect(const std::vector<RegionPoint>& reg, const double reg_angle,
                         const double prec, const double p, rect& rec) const;

/**
 * Compute region's angle as the principal inertia axis of the region.
 * @return          Regions angle.
 */
        double get_theta(const std::vector<RegionPoint>& reg, const double& x,
                         const double& y, const double& reg_angle, const double& prec) const;

/**
 * An estimation of the angle tolerance is performed by the standard deviation of the angle at points
 * near the region's starting point. Then, a new region is grown starting from the same point, but using the
 * estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
 * 'reduce_region_radius' is called to try to satisfy this condition.
 */
        bool refine(std::vector<RegionPoint>& reg, double reg_angle,
                    const double prec, double p, rect& rec, const double& density_th);

/**
 * Reduce the region size, by elimination the points far from the starting point, until that leads to
 * rectangle with the right density of region points or to discard the region if too small.
 */
        bool reduce_region_radius(std::vector<RegionPoint>& reg, double reg_angle,
                                  const double prec, double p, rect& rec, double density, const double& density_th);

/**
 * Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
 * @return      The new NFA value.
 */
        double rect_improve(rect& rec) const;

/**
 * Calculates the number of correctly aligned points within the rectangle.
 * @return      The new NFA value.
 */
        double rect_nfa(const rect& rec) const;

/**
 * Computes the NFA values based on the total number of points, points that agree.
 * n, k, p are the binomial parameters.
 * @return      The new NFA value.
 */
        double nfa(const int& n, const int& k, const double& p) const;

/**
 * Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
 * @return      Whether the point is aligned.
 */
        bool isAligned(int x, int y, const double& theta, const double& prec) const;

    public:
        // Compare norm
        static inline bool compare_norm( const normPoint& n1, const normPoint& n2 )
        {
            return (n1.norm > n2.norm);
        }

    };



    CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetector(
            int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
            double _log_eps, double _density_th, int _n_bins)
    {
        return makePtr<myLineSegmentDetectorImpl>(
                _refine, _scale, _sigma_scale, _quant, _ang_th,
                _log_eps, _density_th, _n_bins);
    }



    myLineSegmentDetectorImpl::myLineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
                                                     double _ang_th, double _log_eps, double _density_th, int _n_bins)
                                                     :img_width(0), img_height(0), LOG_NT(0), w_needed(false), p_needed(false), n_needed(false),
                                                      SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant),
                                                      ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins)
    {
        CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
                  _ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
                  _n_bins > 0);
//        CV_UNUSED(_refine); CV_UNUSED(_log_eps);
//        CV_Error(Error::StsNotImplemented, "Implementation has been removed due original code license issues");
    }

    void myLineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines,
                                         OutputArray _width, OutputArray _prec, OutputArray _nfa)
    {
       // CV_INSTRUMENT_REGION();
        image = _image.getMat();
        CV_Assert(!image.empty() && image.type() == CV_8UC1);

        std::vector<Vec4f> lines;
        std::vector<double> w, p, n;
        w_needed = _width.needed();
        p_needed = _prec.needed();
        if (doRefine < LSD_REFINE_ADV)
            n_needed = false;
        else
            n_needed = _nfa.needed();

        flsd(lines, w, p, n);

        Mat(lines).copyTo(_lines);
        if(w_needed) Mat(w).copyTo(_width);
        if(p_needed) Mat(p).copyTo(_prec);
        if(n_needed) Mat(n).copyTo(_nfa);

        // Clear used structures
        ordered_points.clear();

//        CV_UNUSED(_image); CV_UNUSED(_lines);
//        CV_UNUSED(_width); CV_UNUSED(_prec); CV_UNUSED(_nfa);
//        CV_Error(Error::StsNotImplemented, "Implementation has been removed due original code license issues");
    }

    void myLineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines)
    {
      //  CV_INSTRUMENT_REGION();

        CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));

        if (_image.channels() == 1)
        {
            cvtColor(_image, _image, COLOR_GRAY2BGR);
        }

        Mat _lines = lines.getMat();
        const int N = _lines.checkVector(4);

        CV_Assert(_lines.depth() == CV_32F || _lines.depth() == CV_32S);

        // Draw segments
        if (_lines.depth() == CV_32F)
        {
            for (int i = 0; i < N; ++i)
            {
                const Vec4f& v = _lines.at<Vec4f>(i);
                const Point2f b(v[0], v[1]);
                const Point2f e(v[2], v[3]);
                line(_image, b, e, Scalar(0, 0, 255), 1);
            }
        }
        else
        {
            for (int i = 0; i < N; ++i)
            {
                const Vec4i& v = _lines.at<Vec4i>(i);
                const Point2i b(v[0], v[1]);
                const Point2i e(v[2], v[3]);
                line(_image, b, e, Scalar(0, 0, 255), 1);
            }
        }
    }


    int myLineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image)
    {
      //  CV_INSTRUMENT_REGION();

        Size sz = size;
        if (_image.needed() && _image.size() != size) sz = _image.size();
        CV_Assert(!sz.empty());

        Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
        Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);

        Mat _lines1 = lines1.getMat();
        Mat _lines2 = lines2.getMat();
        const int N1 = _lines1.checkVector(4);
        const int N2 = _lines2.checkVector(4);

        CV_Assert(_lines1.depth() == CV_32F || _lines1.depth() == CV_32S);
        CV_Assert(_lines2.depth() == CV_32F || _lines2.depth() == CV_32S);

        if (_lines1.depth() == CV_32S)
            _lines1.convertTo(_lines1, CV_32F);
        if (_lines2.depth() == CV_32S)
            _lines2.convertTo(_lines2, CV_32F);

        // Draw segments
        for(int i = 0; i < N1; ++i)
        {
            const Point2f b(_lines1.at<Vec4f>(i)[0], _lines1.at<Vec4f>(i)[1]);
            const Point2f e(_lines1.at<Vec4f>(i)[2], _lines1.at<Vec4f>(i)[3]);
            line(I1, b, e, Scalar::all(255), 1);
        }
        for(int i = 0; i < N2; ++i)
        {
            const Point2f b(_lines2.at<Vec4f>(i)[0], _lines2.at<Vec4f>(i)[1]);
            const Point2f e(_lines2.at<Vec4f>(i)[2], _lines2.at<Vec4f>(i)[3]);
            line(I2, b, e, Scalar::all(255), 1);
        }

        // Count the pixels that don't agree
        Mat Ixor;
        bitwise_xor(I1, I2, Ixor);
        int N = countNonZero(Ixor);

        if (_image.needed())
        {
            CV_Assert(_image.channels() == 3);
            Mat img = _image.getMatRef();
            CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous());

            for (unsigned int i = 0; i < I1.total(); ++i)
            {
                uchar i1 = I1.ptr()[i];
                uchar i2 = I2.ptr()[i];
                if (i1 || i2)
                {
                    unsigned int base_idx = i * 3;
                    if (i1) img.ptr()[base_idx] = 255;
                    else img.ptr()[base_idx] = 0;
                    img.ptr()[base_idx + 1] = 0;
                    if (i2) img.ptr()[base_idx + 2] = 255;
                    else img.ptr()[base_idx + 2] = 0;
                }
            }
        }

        return N;
    }

    void myLineSegmentDetectorImpl::flsd(std::vector<Vec4f>& lines,
                                       std::vector<double>& widths, std::vector<double>& precisions,
                                       std::vector<double>& nfas)
    {
        // Angle tolerance
        const double prec = CV_PI * ANG_TH / 180;
        const double p = ANG_TH / 180;
        const double rho = QUANT / sin(prec);    // gradient magnitude threshold

        if(SCALE != 1)
        {
            Mat gaussian_img;
            const double sigma = (SCALE < 1)?(SIGMA_SCALE / SCALE):(SIGMA_SCALE);
            const double sprec = 3;
            const unsigned int h =  (unsigned int)(ceil(sigma * sqrt(2 * sprec * log(10.0))));
            Size ksize(1 + 2 * h, 1 + 2 * h); // kernel size
            GaussianBlur(image, gaussian_img, ksize, sigma);
            // Scale image to needed size
            resize(gaussian_img, scaled_image, Size(), SCALE, SCALE, INTER_LINEAR_EXACT);
            ll_angle(rho, N_BINS);
        }
        else
        {
            scaled_image = image;
            ll_angle(rho, N_BINS);
        }

        LOG_NT = 5 * (log10(double(img_width)) + log10(double(img_height))) / 2 + log10(11.0);
        const size_t min_reg_size = size_t(-LOG_NT/log10(p)); // minimal number of points in region that can give a meaningful event

        // // Initialize region only when needed
        // Mat region = Mat::zeros(scaled_image.size(), CV_8UC1);
        used = Mat_<uchar>::zeros(scaled_image.size()); // zeros = NOTUSED
        std::vector<RegionPoint> reg;

        // Search for line segments
        for(size_t i = 0, points_size = ordered_points.size(); i < points_size; ++i)
        {
            const Point2i& point = ordered_points[i].p;
            if((used.at<uchar>(point) == NOTUSED) && (angles.at<double>(point) != NOTDEF))
            {
                double reg_angle;
                region_grow(ordered_points[i].p, reg, reg_angle, prec);

                // Ignore small regions
                if(reg.size() < min_reg_size) { continue; }

                // Construct rectangular approximation for the region
                rect rec;
                region2rect(reg, reg_angle, prec, p, rec);

                double log_nfa = -1;
                if(doRefine > LSD_REFINE_NONE)
                {
                    // At least REFINE_STANDARD lvl.
                    if(!refine(reg, reg_angle, prec, p, rec, DENSITY_TH)) { continue; }

                    if(doRefine >= LSD_REFINE_ADV)
                    {
                        // Compute NFA
                        log_nfa = rect_improve(rec);
                        if(log_nfa <= LOG_EPS) { continue; }
                    }
                }
                // Found new line

                // Add the offset
                rec.x1 += 0.5; rec.y1 += 0.5;
                rec.x2 += 0.5; rec.y2 += 0.5;

                // scale the result values if a sub-sampling was performed
                if(SCALE != 1)
                {
                    rec.x1 /= SCALE; rec.y1 /= SCALE;
                    rec.x2 /= SCALE; rec.y2 /= SCALE;
                    rec.width /= SCALE;
                }

                //Store the relevant data
                lines.push_back(Vec4f(float(rec.x1), float(rec.y1), float(rec.x2), float(rec.y2)));
                if(w_needed) widths.push_back(rec.width);
                if(p_needed) precisions.push_back(rec.p);
                if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa);
            }
        }
    }

    void myLineSegmentDetectorImpl::ll_angle(const double& threshold,
                                           const unsigned int& n_bins)
    {
        //Initialize data
        angles = Mat_<double>(scaled_image.size());
        modgrad = Mat_<double>(scaled_image.size());

        img_width = scaled_image.cols;
        img_height = scaled_image.rows;

        // Undefined the down and right boundaries
        angles.row(img_height - 1).setTo(NOTDEF);
        angles.col(img_width - 1).setTo(NOTDEF);

        // Computing gradient for remaining pixels
        double max_grad = -1;
        for(int y = 0; y < img_height - 1; ++y)
        {
            const uchar* scaled_image_row = scaled_image.ptr<uchar>(y);
            const uchar* next_scaled_image_row = scaled_image.ptr<uchar>(y+1);
            double* angles_row = angles.ptr<double>(y);
            double* modgrad_row = modgrad.ptr<double>(y);
            for(int x = 0; x < img_width-1; ++x)
            {
                int DA = next_scaled_image_row[x + 1] - scaled_image_row[x];
                int BC = scaled_image_row[x + 1] - next_scaled_image_row[x];
                int gx = DA + BC;    // gradient x component
                int gy = DA - BC;    // gradient y component
                double norm = std::sqrt((gx * gx + gy * gy) / 4.0); // gradient norm

                modgrad_row[x] = norm;    // store gradient

                if (norm <= threshold)  // norm too small, gradient no defined
                {
                    angles_row[x] = NOTDEF;
                }
                else
                {
                    angles_row[x] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS;  // gradient angle computation
                    if (norm > max_grad) { max_grad = norm; }
                }

            }
        }

        // Compute histogram of gradient values
        double bin_coef = (max_grad > 0) ? double(n_bins - 1) / max_grad : 0; // If all image is smooth, max_grad <= 0
        for(int y = 0; y < img_height - 1; ++y)
        {
            const double* modgrad_row = modgrad.ptr<double>(y);
            for(int x = 0; x < img_width - 1; ++x)
            {
                normPoint _point;
                int i = int(modgrad_row[x] * bin_coef);
                _point.p = Point(x, y);
                _point.norm = i;
                ordered_points.push_back(_point);
            }
        }

        // Sort
        std::sort(ordered_points.begin(), ordered_points.end(), compare_norm);
    }

    void myLineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
                                              double& reg_angle, const double& prec)
    {
        reg.clear();

        // Point to this region
        RegionPoint seed;
        seed.x = s.x;
        seed.y = s.y;
        seed.used = &used.at<uchar>(s);
        reg_angle = angles.at<double>(s);
        seed.angle = reg_angle;
        seed.modgrad = modgrad.at<double>(s);
        reg.push_back(seed);

        float sumdx = float(std::cos(reg_angle));
        float sumdy = float(std::sin(reg_angle));
        *seed.used = USED;

        //Try neighboring regions
        for (size_t i = 0;i<reg.size();i++)
        {
            const RegionPoint& rpoint = reg[i];
            int xx_min = std::max(rpoint.x - 1, 0), xx_max = std::min(rpoint.x + 1, img_width - 1);
            int yy_min = std::max(rpoint.y - 1, 0), yy_max = std::min(rpoint.y + 1, img_height - 1);
            for(int yy = yy_min; yy <= yy_max; ++yy)
            {
                uchar* used_row = used.ptr<uchar>(yy);
                const double* angles_row = angles.ptr<double>(yy);
                const double* modgrad_row = modgrad.ptr<double>(yy);
                for(int xx = xx_min; xx <= xx_max; ++xx)
                {
                    uchar& is_used = used_row[xx];
                    if(is_used != USED &&
                       (isAligned(xx, yy, reg_angle, prec)))
                    {
                        const double& angle = angles_row[xx];
                        // Add point
                        is_used = USED;
                        RegionPoint region_point;
                        region_point.x = xx;
                        region_point.y = yy;
                        region_point.used = &is_used;
                        region_point.modgrad = modgrad_row[xx];
                        region_point.angle = angle;
                        reg.push_back(region_point);

                        // Update region's angle
                        sumdx += cos(float(angle));
                        sumdy += sin(float(angle));
                        // reg_angle is used in the isAligned, so it needs to be updates?
                        reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
                    }
                }
            }
        }
    }

    void myLineSegmentDetectorImpl::region2rect(const std::vector<RegionPoint>& reg,
                                              const double reg_angle, const double prec, const double p, rect& rec) const
    {
        double x = 0, y = 0, sum = 0;
        for(size_t i = 0; i < reg.size(); ++i)
        {
            const RegionPoint& pnt = reg[i];
            const double& weight = pnt.modgrad;
            x += double(pnt.x) * weight;
            y += double(pnt.y) * weight;
            sum += weight;
        }

        // Weighted sum must differ from 0
        CV_Assert(sum > 0);

        x /= sum;
        y /= sum;

        double theta = get_theta(reg, x, y, reg_angle, prec);

        // Find length and width
        double dx = cos(theta);
        double dy = sin(theta);
        double l_min = 0, l_max = 0, w_min = 0, w_max = 0;

        for(size_t i = 0; i < reg.size(); ++i)
        {
            double regdx = double(reg[i].x) - x;
            double regdy = double(reg[i].y) - y;

            double l = regdx * dx + regdy * dy;
            double w = -regdx * dy + regdy * dx;

            if(l > l_max) l_max = l;
            else if(l < l_min) l_min = l;
            if(w > w_max) w_max = w;
            else if(w < w_min) w_min = w;
        }

        // Store values
        rec.x1 = x + l_min * dx;
        rec.y1 = y + l_min * dy;
        rec.x2 = x + l_max * dx;
        rec.y2 = y + l_max * dy;
        rec.width = w_max - w_min;
        rec.x = x;
        rec.y = y;
        rec.theta = theta;
        rec.dx = dx;
        rec.dy = dy;
        rec.prec = prec;
        rec.p = p;

        // Min width of 1 pixel
        if(rec.width < 1.0) rec.width = 1.0;
    }

    double myLineSegmentDetectorImpl::get_theta(const std::vector<RegionPoint>& reg, const double& x,
                                              const double& y, const double& reg_angle, const double& prec) const
    {
        double Ixx = 0.0;
        double Iyy = 0.0;
        double Ixy = 0.0;

        // Compute inertia matrix
        for(size_t i = 0; i < reg.size(); ++i)
        {
            const double& regx = reg[i].x;
            const double& regy = reg[i].y;
            const double& weight = reg[i].modgrad;
            double dx = regx - x;
            double dy = regy - y;
            Ixx += dy * dy * weight;
            Iyy += dx * dx * weight;
            Ixy -= dx * dy * weight;
        }

        // Check if inertia matrix is null
        CV_Assert(!(double_equal(Ixx, 0) && double_equal(Iyy, 0) && double_equal(Ixy, 0)));

        // Compute smallest eigenvalue
        double lambda = 0.5 * (Ixx + Iyy - sqrt((Ixx - Iyy) * (Ixx - Iyy) + 4.0 * Ixy * Ixy));

        // Compute angle
        double theta = (fabs(Ixx)>fabs(Iyy))?
                       double(fastAtan2(float(lambda - Ixx), float(Ixy))):
                       double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
        theta *= DEG_TO_RADS;

        // Correct angle by 180 deg if necessary
        if(angle_diff(theta, reg_angle) > prec) { theta += CV_PI; }

        return theta;
    }

    bool myLineSegmentDetectorImpl::refine(std::vector<RegionPoint>& reg, double reg_angle,
                                         const double prec, double p, rect& rec, const double& density_th)
    {
        double density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);

        if (density >= density_th) { return true; }

        // Try to reduce angle tolerance
        double xc = double(reg[0].x);
        double yc = double(reg[0].y);
        const double& ang_c = reg[0].angle;
        double sum = 0, s_sum = 0;
        int n = 0;

        for (size_t i = 0; i < reg.size(); ++i)
        {
            *(reg[i].used) = NOTUSED;
            if (dist(xc, yc, reg[i].x, reg[i].y) < rec.width)
            {
                const double& angle = reg[i].angle;
                double ang_d = angle_diff_signed(angle, ang_c);
                sum += ang_d;
                s_sum += ang_d * ang_d;
                ++n;
            }
        }
        CV_Assert(n > 0);
        double mean_angle = sum / double(n);
        // 2 * standard deviation
        double tau = 2.0 * sqrt((s_sum - 2.0 * mean_angle * sum) / double(n) + mean_angle * mean_angle);

        // Try new region
        region_grow(Point(reg[0].x, reg[0].y), reg, reg_angle, tau);

        if (reg.size() < 2) { return false; }

        region2rect(reg, reg_angle, prec, p, rec);
        density = double(reg.size()) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);

        if (density < density_th)
        {
            return reduce_region_radius(reg, reg_angle, prec, p, rec, density, density_th);
        }
        else
        {
            return true;
        }
    }

    bool myLineSegmentDetectorImpl::reduce_region_radius(std::vector<RegionPoint>& reg, double reg_angle,
                                                       const double prec, double p, rect& rec, double density, const double& density_th)
    {
        // Compute region's radius
        double xc = double(reg[0].x);
        double yc = double(reg[0].y);
        double radSq1 = distSq(xc, yc, rec.x1, rec.y1);
        double radSq2 = distSq(xc, yc, rec.x2, rec.y2);
        double radSq = radSq1 > radSq2 ? radSq1 : radSq2;

        while(density < density_th)
        {
            radSq *= 0.75*0.75; // Reduce region's radius to 75% of its value
            // Remove points from the region and update 'used' map
            for (size_t i = 0; i < reg.size(); ++i)
            {
                if(distSq(xc, yc, double(reg[i].x), double(reg[i].y)) > radSq)
                {
                    // Remove point from the region
                    *(reg[i].used) = NOTUSED;
                    std::swap(reg[i], reg[reg.size() - 1]);
                    reg.pop_back();
                    --i; // To avoid skipping one point
                }
            }

            if(reg.size() < 2) { return false; }

            // Re-compute rectangle
            region2rect(reg ,reg_angle, prec, p, rec);

            // Re-compute region points density
            density = double(reg.size()) /
                      (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
        }

        return true;
    }

    double myLineSegmentDetectorImpl::rect_improve(rect& rec) const
    {
        double delta = 0.5;
        double delta_2 = delta / 2.0;

        double log_nfa = rect_nfa(rec);

        if(log_nfa > LOG_EPS) return log_nfa; // Good rectangle

        // Try to improve
        // Finer precision
        rect r = rect(rec); // Copy
        for(int n = 0; n < 5; ++n)
        {
            r.p /= 2;
            r.prec = r.p * CV_PI;
            double log_nfa_new = rect_nfa(r);
            if(log_nfa_new > log_nfa)
            {
                log_nfa = log_nfa_new;
                rec = rect(r);
            }
        }
        if(log_nfa > LOG_EPS) return log_nfa;

        // Try to reduce width
        r = rect(rec);
        for(unsigned int n = 0; n < 5; ++n)
        {
            if((r.width - delta) >= 0.5)
            {
                r.width -= delta;
                double log_nfa_new = rect_nfa(r);
                if(log_nfa_new > log_nfa)
                {
                    rec = rect(r);
                    log_nfa = log_nfa_new;
                }
            }
        }
        if(log_nfa > LOG_EPS) return log_nfa;

        // Try to reduce one side of rectangle
        r = rect(rec);
        for(unsigned int n = 0; n < 5; ++n)
        {
            if((r.width - delta) >= 0.5)
            {
                r.x1 += -r.dy * delta_2;
                r.y1 +=  r.dx * delta_2;
                r.x2 += -r.dy * delta_2;
                r.y2 +=  r.dx * delta_2;
                r.width -= delta;
                double log_nfa_new = rect_nfa(r);
                if(log_nfa_new > log_nfa)
                {
                    rec = rect(r);
                    log_nfa = log_nfa_new;
                }
            }
        }
        if(log_nfa > LOG_EPS) return log_nfa;

        // Try to reduce other side of rectangle
        r = rect(rec);
        for(unsigned int n = 0; n < 5; ++n)
        {
            if((r.width - delta) >= 0.5)
            {
                r.x1 -= -r.dy * delta_2;
                r.y1 -=  r.dx * delta_2;
                r.x2 -= -r.dy * delta_2;
                r.y2 -=  r.dx * delta_2;
                r.width -= delta;
                double log_nfa_new = rect_nfa(r);
                if(log_nfa_new > log_nfa)
                {
                    rec = rect(r);
                    log_nfa = log_nfa_new;
                }
            }
        }
        if(log_nfa > LOG_EPS) return log_nfa;

        // Try finer precision
        r = rect(rec);
        for(unsigned int n = 0; n < 5; ++n)
        {
            if((r.width - delta) >= 0.5)
            {
                r.p /= 2;
                r.prec = r.p * CV_PI;
                double log_nfa_new = rect_nfa(r);
                if(log_nfa_new > log_nfa)
                {
                    rec = rect(r);
                    log_nfa = log_nfa_new;
                }
            }
        }

        return log_nfa;
    }

    double myLineSegmentDetectorImpl::rect_nfa(const rect& rec) const
    {
        int total_pts = 0, alg_pts = 0;
        double half_width = rec.width / 2.0;
        double dyhw = rec.dy * half_width;
        double dxhw = rec.dx * half_width;

        edge ordered_x[4];
        edge* min_y = &ordered_x[0];
        edge* max_y = &ordered_x[0]; // Will be used for loop range

        ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false;
        ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false;
        ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false;
        ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false;

        std::sort(ordered_x, ordered_x + 4, AsmallerB_XoverY);

        // Find min y. And mark as taken. find max y.
        for(unsigned int i = 1; i < 4; ++i)
        {
            if(min_y->p.y > ordered_x[i].p.y) {min_y = &ordered_x[i]; }
            if(max_y->p.y < ordered_x[i].p.y) {max_y = &ordered_x[i]; }
        }
        min_y->taken = true;

        // Find leftmost untaken point;
        edge* leftmost = 0;
        for(unsigned int i = 0; i < 4; ++i)
        {
            if(!ordered_x[i].taken)
            {
                if(!leftmost) // if uninitialized
                {
                    leftmost = &ordered_x[i];
                }
                else if (leftmost->p.x > ordered_x[i].p.x)
                {
                    leftmost = &ordered_x[i];
                }
            }
        }
        CV_Assert(leftmost != NULL);
        leftmost->taken = true;

        // Find rightmost untaken point;
        edge* rightmost = 0;
        for(unsigned int i = 0; i < 4; ++i)
        {
            if(!ordered_x[i].taken)
            {
                if(!rightmost) // if uninitialized
                {
                    rightmost = &ordered_x[i];
                }
                else if (rightmost->p.x < ordered_x[i].p.x)
                {
                    rightmost = &ordered_x[i];
                }
            }
        }
        CV_Assert(rightmost != NULL);
        rightmost->taken = true;

        // Find last untaken point;
        edge* tailp = 0;
        for(unsigned int i = 0; i < 4; ++i)
        {
            if(!ordered_x[i].taken)
            {
                if(!tailp) // if uninitialized
                {
                    tailp = &ordered_x[i];
                }
                else if (tailp->p.x > ordered_x[i].p.x)
                {
                    tailp = &ordered_x[i];
                }
            }
        }
        CV_Assert(tailp != NULL);
        tailp->taken = true;

        double flstep = (min_y->p.y != leftmost->p.y) ?
                        (min_y->p.x - leftmost->p.x) / (min_y->p.y - leftmost->p.y) : 0; //first left step
        double slstep = (leftmost->p.y != tailp->p.x) ?
                        (leftmost->p.x - tailp->p.x) / (leftmost->p.y - tailp->p.x) : 0; //second left step

        double frstep = (min_y->p.y != rightmost->p.y) ?
                        (min_y->p.x - rightmost->p.x) / (min_y->p.y - rightmost->p.y) : 0; //first right step
        double srstep = (rightmost->p.y != tailp->p.x) ?
                        (rightmost->p.x - tailp->p.x) / (rightmost->p.y - tailp->p.x) : 0; //second right step

        double lstep = flstep, rstep = frstep;

        double left_x = min_y->p.x, right_x = min_y->p.x;

        // Loop around all points in the region and count those that are aligned.
        int min_iter = min_y->p.y;
        int max_iter = max_y->p.y;
        for(int y = min_iter; y <= max_iter; ++y)
        {
            if (y < 0 || y >= img_height) continue;

            for(int x = int(left_x); x <= int(right_x); ++x)
            {
                if (x < 0 || x >= img_width) continue;

                ++total_pts;
                if(isAligned(x, y, rec.theta, rec.prec))
                {
                    ++alg_pts;
                }
            }

            if(y >= leftmost->p.y) { lstep = slstep; }
            if(y >= rightmost->p.y) { rstep = srstep; }

            left_x += lstep;
            right_x += rstep;
        }

        return nfa(total_pts, alg_pts, rec.p);
    }

    double myLineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const
    {
        // Trivial cases
        if(n == 0 || k == 0) { return -LOG_NT; }
        if(n == k) { return -LOG_NT - double(n) * log10(p); }

        double p_term = p / (1 - p);

        double log1term = (double(n) + 1) - log_gamma(double(k) + 1)
                          - log_gamma(double(n-k) + 1)
                          + double(k) * log(p) + double(n-k) * log(1.0 - p);
        double term = exp(log1term);

        if(double_equal(term, 0))
        {
            if(k > n * p) return -log1term / M_LN10 - LOG_NT;
            else return -LOG_NT;
        }

        // Compute more terms if needed
        double bin_tail = term;
        double tolerance = 0.1; // an error of 10% in the result is accepted
        for(int i = k + 1; i <= n; ++i)
        {
            double bin_term = double(n - i + 1) / double(i);
            double mult_term = bin_term * p_term;
            term *= mult_term;
            bin_tail += term;
            if(bin_term < 1)
            {
                double err = term * ((1 - pow(mult_term, double(n-i+1))) / (1 - mult_term) - 1);
                if(err < tolerance * fabs(-log10(bin_tail) - LOG_NT) * bin_tail) break;
            }

        }
        return -log10(bin_tail) - LOG_NT;
    }

    inline bool myLineSegmentDetectorImpl::isAligned(int x, int y, const double& theta, const double& prec) const
    {
        if(x < 0 || y < 0 || x >= angles.cols || y >= angles.rows) { return false; }
        const double& a = angles.at<double>(y, x);
        if(a == NOTDEF) { return false; }

        // It is assumed that 'theta' and 'a' are in the range [-pi,pi]
        double n_theta = theta - a;
        if(n_theta < 0) { n_theta = -n_theta; }
        if(n_theta > M_3_2_PI)
        {
            n_theta -= M_2__PI;
            if(n_theta < 0) n_theta = -n_theta;
        }

        return n_theta <= prec;
    }

} // namespace cv

 在LSDDetector_custom.cpp文件中引用头文件

#include "my_lsd.hpp"

再次编译运行

四、运行

source devel/setup.bash
roslaunch plvins_estimator plvins_show_linepoint.launch
rosbag play MH_05_difficult.bag

注意:我们此时需要需要将src/PL-VINSvins_estimator/launch/下的plvins-show-linepoint.launch改为plvins_show_linepoint.launch(注意是下划线)文件名

数据集下载地址如下:

kmavvisualinertialdatasets – ASL Datasets

博主github仓库中的代码全部都修改完毕,适用ubuntu20.04 opencv4

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/121254.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Node.js中的回调地狱

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…

QDockWidget DEMO 动态添加QDockWidget ,无主窗口,禁止tab重叠

效果&#xff1a; 关键代码&#xff1a; 1、删除主窗口&#xff0c;使用QDockWidget替代主窗口 QWidget* p takeCentralWidget();if (p)delete p;setDockNestingEnabled(true);centralWidget new QDockWidget(this);centralWidget->setAllowedAreas(Qt::AllDockWidgetAre…

docker部署es+kibana

es 暴露的端口特别多 &#xff0c;十分耗内存&#xff0c;数据一般要放置到安全目录&#xff0c;挂载 官网推荐的命令&#xff1a;docker run -d --name elasticsearch --net somenetwork -p 9200:9200 -p 9300:9300 -e "discovery.typesingle-node" elasticsearch…

目标检测标注的时代已经过去了?

在快速发展的机器学习领域&#xff0c;有一个方面一直保持不变&#xff1a;繁琐和耗时的数据标注任务。无论是用于图像分类、目标检测还是语义分割&#xff0c;长期以来人工标记的数据集一直是监督学习的基础。 然而&#xff0c;由于一个创新性的工具 AutoDistill&#xff0c;这…

DocTemplateTool - 可根据模板生成word或pdf文件的工具

你是否经常遇到这样的场景&#xff1a;产品运营有着大量的报告需求&#xff0c;或者给客户领导展现每周的运营报告&#xff1f;这些文档类的任务可以交给运营同事&#xff0c;他们负责文档排版和样式&#xff0c;你作为开发人员你只需要提供数据源&#xff0c;和一个映射表&…

目标检测回归损失函数(看情况补...)

文章目录 L1 loss-平均绝对误差(Mean Absolute Error——MAE)L2 loss-均方误差(Mean Square Error——MSE)Smooth L1 LossMAE、MSE、Smooth L1对比IoU LossGIoU LossDIoU Loss、CIoU LossE-IoU Loss、Focal E-IoU LossReferenceL1 loss-平均绝对误差(Mean Absolute Error——…

TikTok大数据解密:社交媒体的秘密洞察

在数字时代&#xff0c;社交媒体平台已经成为了人们交流、分享和娱乐的主要场所。其中&#xff0c;TikTok作为全球最受欢迎的短视频平台之一&#xff0c;吸引了数以亿计的用户。然而&#xff0c;TikTok不仅是一个视频分享平台&#xff0c;它还是一个庞大的数据宝库&#xff0c;…

计网----累积应答,TCP的流量控制--滑动窗口,粘包问题,心跳机制,Nagle算法,拥塞控制,TCP协议总结,UDP和TCP对比,中介者模式

计网----累积应答&#xff0c;TCP的流量控制–滑动窗口&#xff0c;粘包问题&#xff0c;心跳机制&#xff0c;Nagle算法&#xff0c;拥塞控制&#xff0c;TCP协议总结&#xff0c;UDP和TCP对比&#xff0c;中介者模式 一.累积应答 1.什么是累计应答 每次发一些包&#xff0…

CAS200 CLS216 基于图形用户界面的快速应用程序开发

CAS200 CLS216 基于图形用户界面的快速应用程序开发 最新的Sapera Vision软件套件包括萨佩拉加工和新的星形胶质细胞铥人工智能(AI)的图形应用。该软件套件提供经过现场验证的图像处理和人工智能功能&#xff0c;用于设计、开发和部署高性能机器视觉应用。 这个最新版本的Sape…

【解决问题】---- 解决 avue-crud 表格勾选数据翻页后界面保持选中

1. 错误预览 第一页选择【7、8、9、10】 直接点击第三页未进行选择 直接点击第四页未进行选择 2. 问题总结 通过测试可以看到&#xff0c;页面的选择项会影响到其他页面的选择&#xff1b;点击保存&#xff0c;返回的数据却是真真选择的数据&#xff1b;数据在选择渲染…

Go语言的Json序列化与反序列化、Goto语法、Tcp Socket通信

目录标题 一、Json序列化与反序列化1. 序列化2. 反序列化 二、Goto语法三、Tcp Socket1. 单客户端发送信息到服务端2. 服务端客户端通信 一、Json序列化与反序列化 1. 序列化 package mainimport ("encoding/json""fmt")type Person struct {Name string…

如何使用VSCode来查看二进制文件

2023年11月6日&#xff0c;周一下午 目录 方法1&#xff1a;安装插件Binary Viewer然后用vscode打开一个二进制文件&#xff0c;并点击右上角的"HEX"方法2&#xff1a;安装插件Binary然后用vscode打开一个二进制文件&#xff0c;并点击右上角的"B" 方法1&…

2023年【北京市安全员-A证】最新解析及北京市安全员-A证复审模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年北京市安全员-A证最新解析为正在备考北京市安全员-A证操作证的学员准备的理论考试专题&#xff0c;每个月更新的北京市安全员-A证复审模拟考试祝您顺利通过北京市安全员-A证考试。 1、【多选题】《中华人民共和…

fastspar微生物相关性推断

fastspar 简介 fastspar是基于Sparcc通过C编写的&#xff0c;速度更快&#xff0c;内存消耗更少。sparcc是基于OTU的原始count数&#xff0c;通过log转换和标准化去除传统相对丰度的天然负相关&#xff08;因为所有OTU之和为1&#xff0c;某些OTU丰度高另外一些自然就少&…

【delphi】中 TNetHTTPClient 注意事项

一、TNetHTTPClient 是什么&#xff1f; 用于管理 HTTP 客户端的组件。相当于indy中的TidHTTP控件&#xff0c;是实现HTTP请求的客户端控件。 二、TNetHTTPClient 需要注意什么&#xff1f; 需要注意的是几个Timeout&#xff0c;因为我们使用TNetHTTPClient控件的时候&#x…

【脑机接口 算法】EEGNet: 通用神经网络应用于脑电信号

EEGNet: 神经网络应用于脑电信号 中文题目论文下载&#xff1a;算法程序下载&#xff1a;摘要1 项目介绍2 EEGNet网络原理2.1EEGNet原理架构2.2FBCCA 算法2.3自适应FBCCA算法 3EEGNet网络实现4结果 中文题目 论文下载&#xff1a; DOI: 算法程序下载&#xff1a; 地址 摘要…

踩准AI时代风口,NFPrompt让人人都能成为赚取利润的创作者

★ AI寒武纪时代&#xff0c;抓住风口并不难 众所周知&#xff0c;随着ChatGPT的面世&#xff0c;AI在2023年快速爆发&#xff0c;不少人已经意识到AI将在未来能够影响到我们每个人生活方方面面&#xff0c;同时AI也将打破现有的经济与社会格局。对于普通人来说&#xff0c;如…

1366 - Incorrect string value: ‘\xE5\xB9\xBF\xE5\x85\xB0...‘ for column编码错误

1366 - Incorrect string value: ‘\xE5\xB9\xBF\xE5\x85\xB0…’ for column ‘campus_name’ at row 1 > 查询时间: 0s 原因是数据库创建的时候使用的默认编码latin1&#xff0c;导致表和字段的编码格式都是这种编码&#xff0c;显然这种编码不支持中文。 自己修改了数据库…

肩胛骨筋膜炎怎么治疗最有效

肩胛后背疼痛是平时工作、生活中常见的一类症状&#xff0c;尤其现在随着工作方式和生活习惯的改变&#xff0c;长期伏案工作以及低头看电脑已经成为常态&#xff0c;所以肩胛后背痛出现的频率还是比较高的。常见的原因主要包括&#xff1a;肩胛后背的筋膜炎&#xff0c;最容易…

二叉树OJ练习题(C语言版)

目录 一、相同的树 二、单值二叉树 三、对称二叉树 四、树的遍历 前序遍历 中序遍历 后序遍历 五、另一颗树的子树 六、二叉树的遍历 七、翻转二叉树 八、平衡二叉树 一、相同的树 链接&#xff1a;100. 相同的树 - 力扣&#xff08;LeetCode&#xff09; bool isSameTree(…