条款20:当std::shared_ptr可能悬空时使用std::weak_ptr

自相矛盾的是,如果有一个像std::shared_ptr(见条款19)的但是不参与资源所有权共享的指针是很方便的。换句话说,是一个类似std::shared_ptr但不影响对象引用计数的指针。这种类型的智能指针必须要解决一个std::shared_ptr不存在的问题:可能指向已经销毁的对象。一个真正的智能指针应该跟踪所指对象,在悬空时知晓,悬空(dangle)就是指针指向的对象不再存在。这就是对std::weak_ptr最精确的描述。

你可能想知道什么时候该用std::weak_ptr。你可能想知道关于std::weak_ptr API的更多。它什么都好除了不太智能。std::weak_ptr不能解引用,也不能测试是否为空值。因为std::weak_ptr不是一个独立的智能指针。它是std::shared_ptr的增强。

这种关系在它创建之时就建立了。std::weak_ptr通常从std::shared_ptr上创建。当从std::shared_ptr上创建std::weak_ptr时两者指向相同的对象,但是std::weak_ptr不会影响所指对象的引用计数:

auto spw =                      //spw创建之后,指向的Widget的
    std::make_shared<Widget>(); //引用计数(ref count,RC)为1。
                                //std::make_shared的信息参见条款21
…
std::weak_ptr<Widget> wpw(spw); //wpw指向与spw所指相同的Widget。RC仍为1
…
spw = nullptr;                  //RC变为0,Widget被销毁。
                                //wpw现在悬空

悬空的std::weak_ptr被称作已经expired(过期)。你可以用它直接做测试: 

if (wpw.expired()) …            //如果wpw没有指向对象…

但是通常你期望的是检查std::weak_ptr是否已经过期,如果没有过期则访问其指向的对象。这做起来可不是想着那么简单。因为缺少解引用操作,没有办法写这样的代码。即使有,将检查和解引用分开会引入竞态条件:在调用expired和解引用操作之间,另一个线程可能对指向这对象的std::shared_ptr重新赋值或者析构,并由此造成对象已析构。这种情况下,你的解引用将会产生未定义行为。

你需要的是一个原子操作检查std::weak_ptr是否已经过期,如果没有过期就访问所指对象。这可以通过从std::weak_ptr创建std::shared_ptr来实现,具体有两种形式可以从std::weak_ptr上创建std::shared_ptr,具体用哪种取决于std::weak_ptr过期时你希望std::shared_ptr表现出什么行为。一种形式是std::weak_ptr::lock,它返回一个std::shared_ptr,如果std::weak_ptr过期这个std::shared_ptr为空:

std::shared_ptr<Widget> spw1 = wpw.lock();  //如果wpw过期,spw1就为空
 											
auto spw2 = wpw.lock();                     //同上,但是使用auto

另一种形式是以std::weak_ptr为实参构造std::shared_ptr。这种情况中,如果std::weak_ptr过期,会抛出一个异常:

std::shared_ptr<Widget> spw3(wpw);          //如果wpw过期,抛出std::bad_weak_ptr异常

 但是你可能还想知道为什么std::weak_ptr就有用了。考虑一个工厂函数,它基于一个唯一ID从只读对象上产出智能指针。根据条款18的描述,工厂函数会返回一个该对象类型的std::unique_ptr

std::unique_ptr<const Widget> loadWidget(WidgetID id);

 如果调用loadWidget是一个昂贵的操作(比如它操作文件或者数据库I/O)并且重复使用ID很常见,一个合理的优化是再写一个函数除了完成loadWidget做的事情之外再缓存它的结果。当每个请求获取的Widget阻塞了缓存也会导致本身性能问题,所以另一个合理的优化可以是当Widget不再使用的时候销毁它的缓存。

对于可缓存的工厂函数,返回std::unique_ptr不是好的选择。调用者应该接收缓存对象的智能指针,调用者也应该确定这些对象的生命周期,但是缓存本身也需要一个指针指向它所缓存的对象。缓存对象的指针需要知道它是否已经悬空,因为当工厂客户端使用完工厂产生的对象后,对象将被销毁,关联的缓存条目会悬空。所以缓存应该使用std::weak_ptr,这可以知道是否已经悬空。这意味着工厂函数返回值类型应该是std::shared_ptr,因为只有当对象的生命周期由std::shared_ptr管理时,std::weak_ptr才能检测到悬空。

下面是一个临时凑合的loadWidget的缓存版本的实现:

std::shared_ptr<const Widget> fastLoadWidget(WidgetID id)
{
    static std::unordered_map<WidgetID,
                              std::weak_ptr<const Widget>> cache;
                                        
    auto objPtr = cache[id].lock();     //objPtr是去缓存对象的
                                        //std::shared_ptr(或
                                        //当对象不在缓存中时为null)

    if (!objPtr) {                      //如果不在缓存中
        objPtr = loadWidget(id);        //加载它
        cache[id] = objPtr;             //缓存它
    }
    return objPtr;
}

这个实现使用了C++11的hash表容器std::unordered_map,但是需要的WidgetID哈希和相等性比较函数在这里没有展示。 

 fastLoadWidget的实现忽略了以下事实:缓存可能会累积过期的std::weak_ptr,这些指针对应了不再使用的Widget(也已经被销毁了)。其实可以改进实现方式,但是花时间在这个问题上不会让我们对std::weak_ptr有更深入的理解,让我们考虑第二个用例:观察者设计模式(Observer design pattern)。此模式的主要组件是subjects(状态可能会更改的对象)和observers(状态发生更改时要通知的对象)。在大多数实现中,每个subject都包含一个数据成员,该成员持有指向其observers的指针。这使subjects很容易发布状态更改通知。subjects对控制observers的生命周期(即它们什么时候被销毁)没有兴趣,但是subjects对确保另一件事具有极大的兴趣,那事就是一个observer被销毁时,不再尝试访问它。一个合理的设计是每个subject持有一个std::weak_ptrs容器指向observers,因此可以在使用前检查是否已经悬空。

作为最后一个使用std::weak_ptr的例子,考虑一个持有三个对象ABC的数据结构,AC共享B的所有权,因此持有std::shared_ptr

假定从B指向A的指针也很有用。应该使用哪种指针?

有三种选择:

  • 原始指针。使用这种方法,如果A被销毁,但是C继续指向BB就会有一个指向A的悬空指针。而且B不知道指针已经悬空,所以B可能会继续访问,就会导致未定义行为。
  • std::shared_ptr。这种设计,AB都互相持有对方的std::shared_ptr,导致的std::shared_ptr环状结构(A指向BB指向A)阻止AB的销毁。甚至AB无法从其他数据结构访问了(比如,C不再指向B),每个的引用计数都还是1。如果发生了这种情况,AB都被泄漏:程序无法访问它们,但是资源并没有被回收。
  • std::weak_ptr。这避免了上述两个问题。如果A被销毁,B指向它的指针悬空,但是B可以检测到这件事。尤其是,尽管AB互相指向对方,B的指针不会影响A的引用计数,因此在没有std::shared_ptr指向A时不会导致A无法被销毁。

使用std::weak_ptr显然是这些选择中最好的。但是,需要注意使用std::weak_ptr打破std::shared_ptr循环并不常见。在严格分层的数据结构比如树中,子节点只被父节点持有。当父节点被销毁时,子节点就被销毁。从父到子的链接关系可以使用std::unique_ptr很好的表征。从子到父的反向连接可以使用原始指针安全实现,因为子节点的生命周期肯定短于父节点。因此没有子节点解引用一个悬垂的父节点指针这样的风险。

当然,不是所有的使用指针的数据结构都是严格分层的,所以当发生这种情况时,比如上面所述缓存和观察者列表的实现之类的,知道std::weak_ptr随时待命也是不错的。

从效率角度来看,std::weak_ptrstd::shared_ptr基本相同。两者的大小是相同的,使用相同的控制块(参见条款19),构造、析构、赋值操作涉及引用计数的原子操作。这可能让你感到惊讶,因为本条款开篇就提到std::weak_ptr不影响引用计数。我写的是std::weak_ptr不参与对象的共享所有权,因此不影响指向对象的引用计数。实际上在控制块中还是有第二个引用计数,std::weak_ptr操作的是第二个引用计数。想了解细节的话,继续看条款21吧。

请记住:

  • std::weak_ptr替代可能会悬空的std::shared_ptr
  • std::weak_ptr的潜在使用场景包括:缓存、观察者列表、打破std::shared_ptr环状结构。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/1206.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mysql 竟然还有这么多不为人知的查询优化技巧,还不看看?

前言 Mysql 我随手造200W条数据&#xff0c;给你们讲讲分页优化 MySql 索引失效、回表解析 今天再聊聊一些我想分享的查询优化相关点。 正文 准备模拟数据。 首先是一张 test_orde 表&#xff1a; CREATE TABLE test_order (id INT(11) NOT NULL AUTO_INCREMENT,p_sn VARCHA…

Spring事务和事务传播机制

目录 Spring中事务的实现 1、通过代码的方式手动实现事务 2、通过注解的方式实现声明式事务 2.1、Transactional作用范围 2.2、Transactional参数说明 2.3、注意事项 2.4、Transactional工作原理 事务隔离级别 1、事务特性 2、Spring中设置事务隔离级别 2.1、MySQL事…

Linux:函数指针做函数参数

#include <stdio.h> #include <stdlib.h> //创建带有函数指针做参数的函数框架api //调用者要先实现回调函数 //调用者再去调用函数框架 //所谓的回调是指 调用者去调用一个带有函数指针做参数的函数框架&#xff0c;函数框架反过来要调用调用者提供的回调函数 …

蓝桥杯冲击-02约数篇(必考)

文章目录 前言 一、约数是什么 二、三大模板 1、试除法求约数个数 2、求约数个数 3、求约数之和 三、真题演练 前言 约数和质数一样在蓝桥杯考试中是在数论中考察频率较高的一种&#xff0c;在省赛考察的时候往往就是模板题&#xff0c;难度大一点会结合其他知识点考察&#x…

全面剖析OpenAI发布的GPT-4比其他GPT模型强在哪里

最强的文本生成模型GPT-4一、什么是GPT-4二、GPT-4的能力三、和其他GPT模型比较3.1、增加了图像模态的输入3.2、可操纵性更强3.3、复杂任务处理能力大幅提升3.4、幻觉、安全等局限性的改善3.6、风险和缓解措施改善更多安全特性3.7、可预测的扩展四、与之前 GPT 系列模型比较五、…

QT入门Item Views之QListView

目录 一、QListView界面相关 1、布局介绍 二、代码展示 1、创建模型&#xff0c;导入模型 2、 设置隔行背景色 3、删除选中行 三、源码下载 此文为作者原创&#xff0c;创作不易&#xff0c;转载请标明出处&#xff01; 一、QListView界面相关 1、布局介绍 先看下界面…

高完整性系统工程(三): Logic Intro Formal Specification

目录 1. Propositions 命题 2.1 Propositional Connectives 命题连接词 2.2 Variables 变量 2.3 Sets 2.3.1 Set Operations 2.4 Predicates 2.5 Quantification 量化 2.6 Relations 2.6.1 What Is A Relation? 2.6.2 Relations as Sets 2.6.3 Binary Relations as…

ZYNQ硬件调试-------day2

ZYNQ硬件调试-------day2 1.ILA&#xff08;Integrated Logic Analyzer &#xff09; 监控逻辑内部信号和端口信号;可以理解为输出。可单独使用 2.VIO&#xff08;Virtual Input/Output &#xff09; 实时监控和驱动逻辑内部信号和端口信号&#xff0c;可以理解为触发输入。不可…

第十四届蓝桥杯三月真题刷题训练——第 14 天

目录 第 1 题&#xff1a;组队 题目描述 运行限制 代码&#xff1a; 第 2 题&#xff1a;不同子串 题目描述 运行限制 代码&#xff1a; 思路&#xff1a; 第 3 题&#xff1a;等差数列 题目描述 输入描述 输出描述 输入输出样例 运行限制 代码&#xff1a; 思…

Dubbo原理简介

Dubbo缺省协议采用单一长连接和NIO异步通讯&#xff0c;适合于小数据量大并发的服务调用&#xff0c;以及服务消费者机器数远大于服务提供者机器数的情况。 作为RPC&#xff1a;支持各种传输协议&#xff0c;如dubbo,hession,json,fastjson&#xff0c;底层采用mina,netty长连接…

nginx详解(概念、Linux安装、配置、应用)

1.nginx是什么 百度百科 看百度百科的解释&#xff0c;第一句话就是错的。“Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器”&#xff0c;从语法来看&#xff0c;去掉形容词就是&#xff1a;Nginx是服务器&#xff0c;nginx怎么会是服务器呢&#xff0c;nginx只是一…

Matlab进阶绘图第8期—聚类/分类散点图

聚类/分类散点图是一种特殊的特征渲染散点图。 聚类/分类散点图通过一定的聚类、分类方法&#xff0c;将特征相近的离散点划分到同一个类别中&#xff0c;进而将每个离散点赋予类别标签&#xff0c;并利用不同的颜色对不同的类别进行区分。 本文使用Matlab自带的gscatter函数…

C语言变量和数据类型的使用

文章目录前言一、将变量输出打印到控制台1.整形变量的输出2.浮点型变量的输出1.flaot的输出2.doble的输出3.float和double输出的区别4.%f,%10.2f......二、数据类型的大小总结前言 上一篇文章我们学习了C语言变量和数据类型的基本概念那么今天我们就具体的来看看如何在代码中使…

css实现文字大小自适应

在页面编写中经常会碰到页面自适应的问题&#xff0c;也就是页面内部的元素会随着窗口的放大缩小而放大缩小&#xff0c;box可以通过calc 百分比的形式做到页面自适应&#xff0c;但是box内的字体却无法做到这点&#xff0c;往往box自适应大小了&#xff0c;内部的字体还是原来…

selenium(5)-------自动化测试脚本(python)

1)alert框的处理 前提:我们是不可以通过控制台直接定位元素的方式去选中这个alert框的&#xff0c;例如说xpath直接进行定位元素 1)先获得弹框的操作句柄:alertdriver.switch_to.alert 2)再次调用accept方法进行关闭弹窗:alert.accept() from selenium import webdriver import…

强化学习分类与汇总介绍

1.强化学习&#xff08;Reinforcement Learning, RL&#xff09; 强化学习把学习看作试探评价过程&#xff0c;Agent选择一个动作用于环境&#xff0c;环境接受该动作后状态发生变化&#xff0c;同时产生一个强化信号(奖或惩)反馈给Agent&#xff0c;Agent根据强化信号和环境当…

【python刷题】leecode官方提示“->“,“:“这些符号是什么意思?什么是Type Hints?

作者&#xff1a;20岁爱吃必胜客&#xff08;坤制作人&#xff09;&#xff0c;近十年开发经验, 跨域学习者&#xff0c;目前于海外某世界知名高校就读计算机相关专业。荣誉&#xff1a;阿里云博客专家认证、腾讯开发者社区优质创作者&#xff0c;在CTF省赛校赛多次取得好成绩。…

JavaSE基础总结

JDK与JRE JDK&#xff0c;全称Java Development Kit&#xff0c;Java开发工具包 JRE&#xff0c;全称Java Runntime Environment&#xff0c;Java运行环境 JDK包含后者JRE。 JDK也可以说是Java SDK&#xff08;Software Development kit&#xff0c;软件开发工具包&#xff09;…

JVM高频面试题

1、项目中什么情况下会内存溢出&#xff0c;怎么解决&#xff1f; &#xff08;1&#xff09;误用固定大小线程池导致内存溢出 Excutors.newFixedThreadPool内最大线程数是21亿(2) 误用带缓冲线程池导致内存溢出最大线程数是21亿(3)一次查询太多的数据&#xff0c;导致内存占用…

基于深度学习的农作物叶片病害检测系统(UI界面+YOLOv5+训练数据集)

摘要&#xff1a;农作物叶片病害检测系统用于智能检测常见农作物叶片病害情况&#xff0c;自动化标注、记录和保存病害位置和类型&#xff0c;辅助作物病害防治以增加产值。本文详细介绍基于YOLOv5深度学习模型的农作物叶片病害检测系统&#xff0c;在介绍算法原理的同时&#…