使用Python从零实现多分类SVM

本文将首先简要概述支持向量机及其训练和推理方程,然后将其转换为代码以开发支持向量机模型。之后然后将其扩展成多分类的场景,并通过使用Sci-kit Learn测试我们的模型来结束。

SVM概述

支持向量机的目标是拟合获得最大边缘的超平面(两个类中最近点的距离)。可以直观地表明,这样的超平面(A)比没有最大化边际的超平面(B)具有更好的泛化特性和对噪声的鲁棒性。

为了实现这一点,SVM通过求解以下优化问题找到超平面的W和b:

它试图找到W,b,使最近点的距离最大化,并正确分类所有内容(如y取±1的约束)。这可以被证明相当于以下优化问题:

可以写出等价的对偶优化问题

这个问题的解决方案产生了一个拉格朗日乘数,我们假设数据集中的每个点的大小为m:(α 1, α 2,…,α _n)。目标函数在α中明显是二次的,约束是线性的,这意味着它可以很容易地用二次规划求解。一旦找到解,由对偶的推导可知:

注意,只有具有α>0的点才定义超平面(对和有贡献)。这些被称为支持向量。因此当给定一个新例子x时,返回其预测y=±1的预测方程为:

这种支持向量机的基本形式被称为硬边界支持向量机(hard margin SVM),因为它解决的优化问题(如上所述)强制要求训练中的所有点必须被正确分类。但在实际场景中,可能存在一些噪声,阻止或限制了完美分离数据的超平面,在这种情况下,优化问题将不返回或返回一个糟糕的解决方案。

软边界支持向量机(soft margin SVM)通过引入C常数(用户给定的超参数)来适应优化问题,该常数控制它应该有多“硬”。特别地,它将原优化问题修改为:

它允许每个点产生一些错误λ(例如,在超平面的错误一侧),并且通过将它们在目标函数中的总和加权C来减少它们。当C趋于无穷时(一般情况下肯定不会),它就等于硬边界。与此同时,较小的C将允许更多的“违规行为”(以换取更大的支持;例如,更小的w (w)。

可以证明,等价对偶问题只有在约束每个点的α≤C时才会发生变化。

由于允许违例,支持向量(带有α>0的点)不再都在边界的边缘。任何错误的支持向量都具有α=C,而非支持向量(α=0)不能发生错误。我们称潜在错误(α=C)的支持向量为“非错误编剧支持向量”和其他纯粹的支持向量(没有违规;“边界支持向量”(0<α<C)。

这样推理方程不变:

现在(xₛ,yₛ)必须是一个没有违规的支持向量,因为方程假设它在边界的边缘。

软边界支持向量机扩展了硬边界支持向量机来处理噪声,但通常由于噪声以外的因素,例如自然非线性,数据不能被超平面分离。软边界支持向量机可以用于这样的情况,但是最优解决方案的超平面,它允许的误差远远超过现实中可以容忍的误差。

例如,在左边的例子中,无论C的设置如何,软边界支持向量机都找不到线性超平面。但是可以通过某种转换函数z=Φ(x)将数据集中的每个点x映射到更高的维度,从而使数据在新的高维空间中更加线性(或完全线性)。这相当于用z替换x得到:

在现实中,特别是当Φ转换为非常高维的空间时,计算z可能需要很长时间。所以就出现了核函数。它用一个数学函数(称为核函数)的等效计算来取代z,并且更快(例如,对z进行代数简化)。例如,这里有一些流行的核函数(每个都对应于一些转换Φ到更高维度空间):

这样,对偶优化问题就变成:

直观地,推理方程(经过代数处理后)为:

上面所有方程的完整推导,有很多相关的文章了,我们就不详细介绍了。

Python实现

对于实现,我们将使用下面这些库:

 import numpy as np                  # for basic operations over arrays
 from scipy.spatial import distance  # to compute the Gaussian kernel
 import cvxopt                       # to solve the dual opt. problem
 import copy                         # to copy numpy arrays

定义核和SVM超参数,我们将实现常见的三个核函数:

 class SVM:
     linear = lambda x, xࠤ , c=0: x @ xࠤ.T
     polynomial = lambda x, xࠤ , Q=5: (1 + x @ xࠤ.T)**Q
     rbf = lambda x, xࠤ, γ=10: np.exp(-γ*distance.cdist(x, xࠤ,'sqeuclidean'))
     kernel_funs = {'linear': linear, 'polynomial': polynomial, 'rbf': rbf}

为了与其他核保持一致,线性核采用了一个额外的无用的超参数。kernel_funs接受核函数名称的字符串,并返回相应的内核函数。

继续定义构造函数:

 class SVM:
     linear = lambda x, xࠤ , c=0: x @ xࠤ.T
     polynomial = lambda x, xࠤ , Q=5: (1 + x @ xࠤ.T)**Q
     rbf = lambda x, xࠤ, γ=10: np.exp(-γ*distance.cdist(x, xࠤ,'sqeuclidean'))
     kernel_funs = {'linear': linear, 'polynomial': polynomial, 'rbf': rbf}
     
     def __init__(self, kernel='rbf', C=1, k=2):
         # set the hyperparameters
         self.kernel_str = kernel
         self.kernel = SVM.kernel_funs[kernel]
         self.C = C                  # regularization parameter
         self.k = k                  # kernel parameter
         
         # training data and support vectors (set later)
         self.X, y = None, None
         self.αs = None
         
         # for multi-class classification (set later)
         self.multiclass = False
         self.clfs = []              

SVM有三个主要的超参数,核(我们存储给定的字符串和相应的核函数),正则化参数C和核超参数(传递给核函数);它表示多项式核的Q和RBF核的γ。

为了兼容sklearn的形式,我们需要使用fit和predict函数来扩展这个类,定义以下函数,并在稍后将其用作装饰器:

 SVMClass = lambda func: setattr(SVM, func.__name__, func) or func

拟合SVM对应于通过求解对偶优化问题找到每个点的支持向量α:

设α为可变列向量(α₁α₂…α _n);y为标签(y₁α₂…y_N)常数列向量;K为常数矩阵,其中K[n,m]计算核在(x, x)处的值。点积、外积和二次型分别基于索引的等价表达式:

可以将对偶优化问题写成矩阵形式如下:

这是一个二次规划,CVXOPT的文档中解释如下:

可以只使用(P,q)或(P,q,G,h)或(P,q,G,h, A, b)等等来调用它(任何未给出的都将由默认值设置,例如1)。

对于(P, q, G, h, A, b)的值,我们的例子可以做以下比较:

为了便于比较,将第一个重写如下:

现在很明显(0≤α等价于-α≤0):

我们就可以写出如下的fit函数:

 @SVMClass
 def fit(self, X, y, eval_train=False):
     # if more than two unique labels, call the multiclass version
     if len(np.unique(y)) > 2:
         self.multiclass = True
         return self.multi_fit(X, y, eval_train)
     
     # if labels given in {0,1} change it to {-1,1}
     if set(np.unique(y)) == {0, 1}: y[y == 0] = -1
 
     # ensure y is a Nx1 column vector (needed by CVXOPT)
     self.y = y.reshape(-1, 1).astype(np.double) # Has to be a column vector
     self.X = X
     N = X.shape[0]  # Number of points
     
     # compute the kernel over all possible pairs of (x, x') in the data
     # by Numpy's vectorization this yields the matrix K
     self.K = self.kernel(X, X, self.k)
     
     ### Set up optimization parameters
     # For 1/2 x^T P x + q^T x
     P = cvxopt.matrix(self.y @ self.y.T * self.K)
     q = cvxopt.matrix(-np.ones((N, 1)))
     
     # For Ax = b
     A = cvxopt.matrix(self.y.T)
     b = cvxopt.matrix(np.zeros(1))
 
     # For Gx <= h
     G = cvxopt.matrix(np.vstack((-np.identity(N),
                                  np.identity(N))))
     h = cvxopt.matrix(np.vstack((np.zeros((N,1)),
                                  np.ones((N,1)) * self.C)))
 
     # Solve    
     cvxopt.solvers.options['show_progress'] = False
     sol = cvxopt.solvers.qp(P, q, G, h, A, b)
     self.αs = np.array(sol["x"])            # our solution
         
     # a Boolean array that flags points which are support vectors
     self.is_sv = ((self.αs-1e-3 > 0)&(self.αs <= self.C)).squeeze()
     # an index of some margin support vector
     self.margin_sv = np.argmax((0 < self.αs-1e-3)&(self.αs < self.C-1e-3))
     
     if eval_train:  
       print(f"Finished training with accuracy{self.evaluate(X, y)}")

我们确保这是一个二进制问题,并且二进制标签按照支持向量机(±1)的假设设置,并且y是一个维数为(N,1)的列向量。然后求解求解(α₁α₂…α _n) 的优化问题。

使用(α₁α₂…α _n) _来获得在与支持向量对应的任何索引处为1的标志数组,然后可以通过仅对支持向量和(xₛ,yₛ)的边界支持向量的索引求和来应用预测方程。我们确实假设非支持向量可能不完全具有α=0,如果它的α≤1e-3,那么这是近似为零(CVXOPT结果可能不是最终精确的)。同样假设非边际支持向量可能不完全具有α=C。

下面就是预测的方法,预测方程为:

 @SVMClass
 def predict(self, X_t):
     if self.multiclass: return self.multi_predict(X_t)
     # compute (xₛ, yₛ)
     xₛ, yₛ = self.X[self.margin_sv, np.newaxis], self.y[self.margin_sv]
     # find support vectors
     αs, y, X= self.αs[self.is_sv], self.y[self.is_sv], self.X[self.is_sv]
     # compute the second term
     b = yₛ - np.sum(αs * y * self.kernel(X, xₛ, self.k), axis=0)
     # compute the score
     score = np.sum(αs * y * self.kernel(X, X_t, self.k), axis=0) + b
     return np.sign(score).astype(int), score

我们还可以实现一个评估方法来计算精度(在上面的fit中使用)。

 @SVMClass
 def evaluate(self, X,y):  
     outputs, _ = self.predict(X)
     accuracy = np.sum(outputs == y) / len(y)
     return round(accuracy, 2)

最后测试我们的完整代码:

 from sklearn.datasets import make_classification
 import numpy as np
 
 # Load the dataset
 np.random.seed(1)
 X, y = make_classification(n_samples=2500, n_features=5, 
                            n_redundant=0, n_informative=5, 
                            n_classes=2,  class_sep=0.3)
 
 # Test Implemented SVM
 svm = SVM(kernel='rbf', k=1)
 svm.fit(X, y, eval_train=True)
 
 y_pred, _ = svm.predict(X)
 print(f"Accuracy: {np.sum(y==y_pred)/y.shape[0]}")  #0.9108
 
 # Test with Scikit
 from sklearn.svm import SVC
 clf = SVC(kernel='rbf', C=1, gamma=1)
 clf.fit(X, y)
 y_pred = clf.predict(X)
 print(f"Accuracy: {sum(y==y_pred)/y.shape[0]}")    #0.9108

多分类SVM

我们都知道SVM的目标是二元分类,如果要将模型推广到多类则需要为每个类训练一个二元SVM分类器,然后对每个类进行循环,并将属于它的点重新标记为+1,并将所有其他类的点重新标记为-1。

当给定k个类时,训练的结果是k个分类器,其中第i个分类器在数据上进行训练,第i个分类器被标记为+1,所有其他分类器被标记为-1。

 @SVMClass
 def multi_fit(self, X, y, eval_train=False):
     self.k = len(np.unique(y))      # number of classes
     # for each pair of classes
     for i in range(self.k):
         # get the data for the pair
         Xs, Ys = X, copy.copy(y)
         # change the labels to -1 and 1
         Ys[Ys!=i], Ys[Ys==i] = -1, +1
         # fit the classifier
         clf = SVM(kernel=self.kernel_str, C=self.C, k=self.k)
         clf.fit(Xs, Ys)
         # save the classifier
         self.clfs.append(clf)
     if eval_train:  
         print(f"Finished training with accuracy {self.evaluate(X, y)}")

然后,为了对新示例执行预测,我们选择相应分类器最自信(得分最高)的类。

 @SVMClass
 def multi_predict(self, X):
     # get the predictions from all classifiers
     N = X.shape[0]
     preds = np.zeros((N, self.k))
     for i, clf in enumerate(self.clfs):
         _, preds[:, i] = clf.predict(X)
     
     # get the argmax and the corresponding score
     return np.argmax(preds, axis=1), np.max(preds, axis=1)

完整测试代码:

 from sklearn.datasets import make_classification
 import numpy as np
 
 # Load the dataset
 np.random.seed(1)
 X, y = make_classification(n_samples=500, n_features=2, 
                            n_redundant=0, n_informative=2, 
                            n_classes=4, n_clusters_per_class=1,  
                            class_sep=0.3)
 
 # Test SVM
 svm = SVM(kernel='rbf', k=4)
 svm.fit(X, y, eval_train=True)
 
 y_pred = svm.predict(X)
 print(f"Accuracy: {np.sum(y==y_pred)/y.shape[0]}") # 0.65
 
 # Test with Scikit
 from sklearn.multiclass import OneVsRestClassifier
 from sklearn.svm import SVC
 
 clf = OneVsRestClassifier(SVC(kernel='rbf', C=1, gamma=4)).fit(X, y)
 y_pred = clf.predict(X)
 print(f"Accuracy: {sum(y==y_pred)/y.shape[0]}")    # 0.65

绘制每个决策区域的图示,得到以下图:

可以看到,我们的实现与Sci-kit Learn结果相当,说明在算法实现上没有问题。注意:SVM默认支持OVR(没有如上所示的显式调用),它是特定于SVM的进一步优化。

总结

我们使用Python实现了支持向量机(SVM)学习算法,并且包括了软边界和常用的三个核函数。我们还将SVM扩展到多分类的场景,并使用Sci-kit Learn验证了我们的实现。希望通过本文你可以更好的了解SVM。

https://avoid.overfit.cn/post/0b2410e6737a4911be507ca29cb3136c

作者:Essam Wisam

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/120536.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Go语言用Colly库编写的图像爬虫程序

下面是一个使用Colly库编写的Go语言图像爬虫程序&#xff0c;该程序会爬取news.qq上的图片&#xff0c;并使用proxy_host:duoip和proxy_port:8000的爬虫IP服务器进行抓取。 package mainimport ("fmt""net/http""github.com/crawlab-collective/go-co…

YOLOv4: Optimal Speed and Accuracy of Object Detection(2020.4)

文章目录 AbstractIntroductionRelated workObject detection modelsBag of freebiesBag of specials MethodologySelection of architectureSelection of BoF and BoSAdditional improvementsYOLOv4 ExperimentsResults表8列出了使用Maxwell GPU的帧率对比结果表9列出了使用Pa…

asp.net生产线远程故障诊断系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 生产线远程故障诊断系统是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用 c#语言开发 asp.net生产线远程故障诊断…

ARMday03(寄存器读写、栈、程序状态寄存器、软中断和异常、混合编程)

单寄存器内存读写指令 将一个寄存器中的数值写入到内存&#xff0c;或者从内存中读取数据放在某一个指定寄存器中 指令码和功能 1.向内存中写&#xff1a; str{条件码} 目标寄存器,[目标地址]&#xff1a;将目标寄存器的4字节数值写入到目标地址为首地址的空间中 strh{条件码…

openvino学习(一)ubuntu20.04安装openvino2022

安装openvino2022要求 操作系统 Ubuntu 18.04 长期支持 (LTS)&#xff0c;64 位 Ubuntu 20.04 长期支持 (LTS)&#xff0c;64 位 软件 CMake 3.13 或更高版本&#xff0c;64 位 GCC 7.5.0&#xff08;适用于 Ubuntu 18.04&#xff09;或 GCC 9.3.0&#xff08;适用于 Ubunt…

[ Linux Busybox ] flash_eraseall 命令解析

文章目录 相关结构体flash_eraseall 函数实现flash_eraseall 实现流程图 文件路径&#xff1a;busybox-1.20.2/miscutils/flash_eraseall.c 相关结构体 MTD 相关信息结构体 struct mtd_info_user {__u8 type; // MTD 设备类型__u32 flags; // MTD设…

一篇文章带你搞懂DNS全流程

1.DNS与CDN DNS是域名系统的缩写&#xff0c;它是一种将域名和IP地址相互映射的分布式数据库&#xff0c;能够使人更方便地访问互联网。 DNS的主要功能是将域名解析为IP地址。当你在浏览器中输入一个网址时&#xff0c;浏览器会向DNS服务器发送一个请求&#xff0c;以获取该网…

如何使用 JMeter 进行 HTTPS 请求测试?

本文将介绍如何使用 JMeter 测试 HTTPS 请求&#xff0c;并提供相关的技巧和注意事项。 在进行性能测试时&#xff0c;很多网站都采用了 HTTPS 协议。当我们测试 HTTPS 请求&#xff0c;如果服务端开启了双向认证&#xff0c;则需要客户端发送请求时带上证书。本文介绍如何在 …

换服还是掀桌?哪条才是程序员的出路?

站在时代的风口浪尖&#xff0c;猪都能起飞。 大数据互联网正是时代的宠儿&#xff0c;IT行业的发展也正如火如荼。 人人都眼红程序员的高薪资&#xff0c;认为他们吃着时代的红利。 但是三百六十行&#xff0c;行行出社畜。”996“也好&#xff0c;甚至"007"也罢…

软件测试面试题【2023最新合集】

收集了各大公司的面试经验&#xff0c;现整理出来&#xff0c;希望能给正在找工作的志同道合的小伙伴一些指引&#xff0c;本文会持续更新的哦。 1、 CPU 和 GPU的区别 一个是通用计算&#xff0c;一个是专用计算。 CPU主要负责操作系统和应用程序&#xff0c;GPU主要负责跟…

TensorFlow学习笔记--(1)张量的随机生成

张量的生成 如何判断一个张量的维数&#xff1a;看张量的中括号有几层 0 1 2 &#xff1a;零维数列 [2 4 6] : 一维向量 [ [1 2 3] [4 5 6] ] : 二维数组 两行三列 第一行数据为 1 2 3 第二行数据为 4 5 6 以此类推 n维张量有n层中括号 tf.zeros(%指定一个张量的维数%) 生成一…

汽车标定技术(二)--基于XCP的标定测量实战

目录 1.工程创建 1.1 新建工程 1.2 设备配置 1.3 标定观测 1.4 刷写 2.原始hex文件与标定文件的合并 2.1 修改memory segment file 2.2 标定量地址偏移 ​编辑 2.3 标定后与原始hex文件合并 2.4 标定后直接merge 2.5 不用对ram地址进行偏移实现hex文件合并 本文使用…

【机器学习】梯度下降预测波士顿房价

文章目录 前言一、数据集介绍二、预测房价代码1.引入库2.数据3.梯度下降 总结 前言 梯度下降算法学习。 一、数据集介绍 波士顿房价数据集&#xff1a;波士顿房价数据集&#xff0c;用于线性回归预测 二、预测房价代码 1.引入库 from sklearn.linear_model import Linear…

【Docker】设置容器系统字符集zh_CN.UTF-8退出失效:关于Docker容器配置环境变量,再次进入失效问题

设置容器系统字符集zh_CN.UTF-8退出失效&#xff1a;关于Docker容器配置环境变量&#xff0c;再次进入失效问题 修改正在运行的Docker容器内的字符集: 先进入Docker容器&#xff1a;docker exec -it 容器ID /bin/bash查看是否支持中文字符集&#xff1a;locale -a | grep zh&a…

案例 | 3D可视化工具HOOPS助力SolidWorks edrawings成功引入AR/VR技术

HOOPS中文网慧都科技是HOOPS全套产品中国地区指定授权经销商&#xff0c;提供3D软件开发工具HOOPS售卖、试用、中文试用指导服务、中文技术支持。http://techsoft3d.evget.com/达索系统SolidWorks面临的挑战 达索系统SolidWorks公司开发和销售三维CAD设计软件、分析软件和产品…

五、计算机网络

&#xff08;一&#xff09;OSI/RM 七层模型 七层模型是计算机网络的基石&#xff0c;整个计算机网络是构建与七层模型之上的。 在数据链路层&#xff0c;数据开始以帧为单位&#xff0c;网卡的 MAC 地址就是数据帧的地址&#xff0c;数据的传输开始有地址了。 局域网是工作…

国自然中标越来越难,怎样才能赢在起跑线上?

众所周知&#xff0c;国自然在学术界的地位和影响力不容小觑。“国自然在手&#xff0c;天下我有”&#xff0c;对于科研人来说&#xff0c;成功申报国自然&#xff0c;有助于职称评审、职业升迁&#xff0c;同时&#xff0c;获得不菲的科研经费。据了解&#xff0c;有些高校还…

https网站加载http资源问题

https网站加载http资源问题 前言&#xff1a;最近项目对接了一个第三方的平台、我们需要展示第三方平台返回来的图片资源、由于我们的服务器设置为了https、但是第三方平台返回的图片链接是 http 资源。所以就出现了图片无法加载出来的问题&#xff0c;在此记录一下问题的解决…

ps人像怎么做渐隐的效果?

photoshop怎么制作人像渐隐的图片效果&#xff1f;渐隐效果需要使用渐变来实现&#xff0c;下面我们就来看看详细的教程。 首先&#xff0c;我们打开Photoshop&#xff0c;点击屏幕框选的【打开】&#xff0c;打开一张背景图片。 下面&#xff0c;我们点击左上角【文件】——【…