计算机毕设 基于大数据的抖音短视频数据分析与可视化 - python 大数据 可视化

文章目录

  • 0 前言
  • 1 课题背景
  • 2 数据清洗
  • 3 数据可视化
    • 地区-用户
    • 观看时间
    • 分界线
    • 每周观看
    • 观看路径
    • 发布地点
    • 视频时长
    • 整体点赞、完播
  • 4 进阶分析
    • 相关性分析
    • 留存率
  • 5 深度分析
    • 客户价值判断
  • 5 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 基于大数据的抖音短视频数据分析与可视化

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

1 课题背景

本项目是大数据—基于抖音用户数据集的可视化分析。抖音作为当下非常热门的短视频软件,其背后的数据有极高的探索价值。本项目根据1737312条用户行为数据,利用python工具进行由浅入深的内容分析,目的是挖掘其中各类信息,更好地进行内容优化、产品运营。

2 数据清洗

数据信息查看

简单看一下前5行数据,确定需要进一步预处理的内容:数据去重、删除没有意义的第一列,部分列格式转换、异常值检测。

# 读取数据
df = pd.read_csv('data.csv')
df.head()

在这里插入图片描述

df.info()

在这里插入图片描述

数据去重

无重复数据

print('去重前:',df.shape[0],'行数据')
print('去重后:',df.drop_duplicates().shape[0],'行数据')

缺失值查看

print(np.sum(df.isnull()))

在这里插入图片描述

变量类型转换

real_time 和 date 转为时间变量,id、城市编码转为字符串,并把小数点去掉

df['date'] = df['date'].astype('datetime64[ns]')
df['real_time'] = df['real_time'].astype('datetime64[ns]')
df['uid'] = df['uid'].astype('str')
df['user_city'] = df['user_city'].astype('str')
df['user_city'] = df['user_city'].apply(lambda x:x[:-2])
df['item_id'] = df['item_id'].astype('str')
df['author_id'] = df['author_id'].astype('str')
df['item_city'] = df['item_city'].astype('str')
df['item_city'] = df['item_city'].apply(lambda x:x[:-2])
df['music_id'] = df['music_id'].astype('str')
df['music_id'] = df['music_id'].apply(lambda x:x[:-2])
df.info()

在这里插入图片描述

3 数据可视化

基本信息的可视化,面向用户、创作者以及内容这三个维度进行,构建成分画像,便于更好地针对用户、创作者进行策略投放、内容推广与营销。

地区-用户

user_city_count = user_info.groupby(['user_city']).count().sort_values(by=['uid'],ascending=False)
x1 = list(user_city_count.index)
y1 = user_city_count['uid'].tolist()
len(y1)

不同地区用户数量分布图

#柱形图代码
chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('地区使用人数', y1, color='#F6325A',
                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},
                      label_opts=opts.LabelOpts(position='top'))
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(
    range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),
    visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),
                     title_opts=opts.TitleOpts(title="不同地区用户数量分布图",pos_left='40%'),
                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'))
chart.render_notebook()

在这里插入图片描述

覆盖到了387个城市,其中编号为99的城市用户比较多超过2000人,6、129、109、31这几个城市的使用人数也超过了1000。

  • 可以关注用户较多城市的特点,对产品受众有进一步的把握。
  • 用户较少的城市可以视作流量洼地,考虑进行地推/用户-用户的推广,增加地区使用人数。

观看时间

h_num = round((df.groupby(['H']).count()['uid']/10000),1).to_list()
h = list(df.groupby(['H']).count().index)

不同时间观看数量分布图

chart = Line()
chart.add_xaxis(h)
chart.add_yaxis('观看数/(万)',h_num, areastyle_opts=opts.AreaStyleOpts(color = '#1AF5EF',opacity=0.3),
                                  itemstyle_opts=opts.ItemStyleOpts(color='black'),
                                  label_opts=opts.LabelOpts(font_size=12))
chart.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="不时间观看数量分布图",pos_left='40%'),)
chart.render_notebook()

去掉时差后
在这里插入图片描述

根据不同时间的观看视频数量来看,11-18,20-21,尤其是13-16是用户使用的高峰期

  • 在用户高浏览的时段进行广告的投放,曝光量更高
  • 在高峰段进行优质内容的推荐,效果会更好

分界线

点赞/完播率分布图

left = df.groupby(['H']).sum()[['finish','like']]
right = df.groupby(['H']).count()['uid']
per = pd.concat([left,right],axis=1)
per['finish_radio'] = round(per['finish']*100/per['uid'],2)
per['like_radio'] = round(per['like']*100/per['uid'],2)
x = list(df.groupby(['H']).count().index)
y1 = per['finish_radio'].to_list()
y2 = per['like_radio'].to_list()
#建立一个基础的图形
chart1 = Line()
chart1.add_xaxis(x)
chart1.add_yaxis('完播率/%',y1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                                      linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.set_global_opts(yaxis_opts =  opts.AxisOpts(min_=25,max_=45))
chart1.extend_axis(yaxis=opts.AxisOpts(min_=0.4,max_=3))
#叠加折线图
chart2 = Line()   
chart2.add_xaxis(x)
chart2.add_yaxis('点赞率/%',y2,yaxis_index=1,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                                            linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.overlap(chart2) 
chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="点赞/完播率分布图",pos_left='40%'),)

chart1.render_notebook()

在这里插入图片描述

关注到点赞率和完播率,这两个与用户粘性、创作者收益有一定关系的指标。可以看到15点是两个指标的小高峰,2、4、20、23完播较高,8、13、18、20点赞率较高。但结合观看数量与时间段的分布图,大致猜测15点深度用户较多。

  • 关注深度用户特点,思考如何增加普通用户的完播、点赞

每周观看

df['weekday'] = df['date'].dt.weekday
week = df.groupby(['weekday']).count()['uid'].to_list()
df_pair = [['周一', week[0]], ['周二', week[1]], ['周三', week[2]], ['周四', week[3]], ['周五', week[4]], ['周六', week[5]], ['周日', week[6]]]
chart = Pie()
chart.add('', df_pair,radius=['40%', '70%'],rosetype='radius',center=['45%', '50%'],label_opts=opts.LabelOpts(is_show=True,formatter = '{b}:{c}次'))
chart.set_global_opts(visualmap_opts=[opts.VisualMapOpts(min_=200000,max_=300000,type_='color', range_color=['#1AF5EF', '#F6325A', '#000000'],is_show=True,pos_top='65%')],
                      legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%',orient='vertical'),
                     title_opts=opts.TitleOpts(title="一周内播放分布图",pos_left='35%'),)

chart.render_notebook()

在这里插入图片描述

在统计的时间内周一到周三观看人数较多,但总体观看次数基本在20-30w之间。

  • 创作者选择在周一-三这几天分布可能会收获更多的观看数量

观看路径

df.groupby(['channel']).count()['uid']

在这里插入图片描述

观看途径主要以1为主,初步猜测为App。3途径也有部分用户使用,可能为浏览器。

  • 考虑拓宽各个观看渠道,增加总体播放量和产品使用度
  • 非主渠道观看,制定策略提升转化,将流量引入主渠道
  • 针对主要渠道内容进行商业化策略投放,效率更高

发布地点

author_info = df.drop_duplicates(['author_id','item_city'])[['author_id','item_city']]
author_info.info()
author_city_count = author_info.groupby(['item_city']).count().sort_values(by=['author_id'],ascending=False)
x1 = list(author_city_count.index)
y1 = author_city_count['author_id'].tolist()
df.drop_duplicates(['author_id']).shape[0]

不同城市创作者分布图

chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('地区创作者人数', y1, color='#F6325A',
                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]})
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(
    range_start=0,range_end=5,orient='horizontal',type_='slider',is_zoom_lock=False,  pos_left='1%' ),
    visualmap_opts=opts.VisualMapOpts(is_show = False,type_='opacity',range_opacity=[0.2, 1]),
                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="不同城市创作者分布图",pos_left='40%'))
chart.render_notebook()

在这里插入图片描述

观看用户地区分布和创作者分布其实存在不对等的情况。4地区创作者最多,超5k人,33、42、10地区创作者也较多。

  • 创作者与地区的联系也值得关注,尤其是创作内容如果和当地风俗环境人文有关
  • 相邻近地区的优质的创作者之间互动,可以更好的引流

视频时长

time = df.drop_duplicates(['item_id'])[['item_id','duration_time']]
time = time.groupby(['duration_time']).count()
x1 = list(time.index)
y1 = time['item_id'].tolist()

不同时长作品分布图

chart = Bar()
chart.add_xaxis(x1)
chart.add_yaxis('视频时长对应视频数', y1, color='#1AF5EF',
                     itemstyle_opts={'barBorderRadius':[60, 60, 20, 20]},
               label_opts=opts.LabelOpts(font_size=12,  color='black'))
chart.set_global_opts(datazoom_opts=opts.DataZoomOpts(
    range_start=0,range_end=50,orient='horizontal',type_='slider'),
    visualmap_opts=opts.VisualMapOpts(max_=100000,min_=200,is_show = False,type_='opacity',range_opacity=[0.4, 1]),
                     legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="不同时长作品分布图",pos_left='40%'))

chart.render_notebook() 

在这里插入图片描述

视频时长主要集中在9-10秒,符合抖音“短”视频的特点。

  • 官方提供9/10秒专用剪视频模板,提高创作效率
  • 创作者关注创意浓缩和内容提炼
  • 视频分布在这两个时间点的爆发也能侧面反映用户刷视频的行为特征

整体点赞、完播

like_per = 100*np.sum(df['like'])/len(df['like'])
finish_per = 100*np.sum(df['finish'])/len(df['finish'])
gauge = Gauge()
gauge.add("",[("视频互动率", like_per),['完播率',finish_per]],detail_label_opts=opts.LabelOpts(is_show=False,font_size=18),
                                  axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(
                                      color=[(0.3, "#1AF5EF"), (0.7, "#F6325A"), (1, "#000000")],width=20)))
gauge.render_notebook()

在这里插入图片描述

内容整体完播率非常接近40%,点赞率在1%左右

  • 用户更多是“刷”视频,挖掘吸引力和作品连贯性,能更好留住用户
  • 点赞功能挖掘不够,可尝试进行ABtest,对点赞按钮增加动画,测试是否会提升点赞率

4 进阶分析

相关性分析

df_cor = df[['finish','like','duration_time','H']] # 只选取部分
cor_table = df_cor.corr(method='spearman')
cor_array = np.array(cor_table)
cor_name = list(cor_table.columns)
value = [[i, j, cor_array[i,j]] for i in [3,2,1,0] for j in [0,1,2,3]] 
heat = HeatMap()
heat.add_xaxis(cor_name)
heat.add_yaxis("",cor_name,value,label_opts=opts.LabelOpts(is_show=True, position="inside"))
heat.set_global_opts(visualmap_opts=opts.VisualMapOpts(is_show=False, max_=0.08, range_color=["#1AF5EF", "#F6325A", "#000000"]))
heat.render_notebook()

在这里插入图片描述

因为变量非连续,采取spearman相关系数,制作相关性热力图。由于数据量比较大的缘故,几个数量性变量之间的相关性都比较小,其中看到finish和点赞之间的相关系数稍微大一些,可以一致反映用户对该视频的偏好。

留存率

pv/uv

temp = df['date'].to_list()
puv = df.groupby(['date']).agg({'uid':'nunique','item_id':'count'})
uv = puv['uid'].to_list()
pv = puv['item_id'].to_list()
time = puv.index.to_list()
chart1 = Line()
chart1.add_xaxis(time)
chart1.add_yaxis('uv',uv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                linestyle_opts=opts.LineStyleOpts(color='#1AF5EF',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.add_yaxis('pv',pv,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.render_notebook()

在这里插入图片描述

在2019.10.18进入用户使用高峰阶段,目标用户单人每天浏览多个视频。

  • 关注高峰时间段,是否是当下推荐算法起作用了

7/10 留存率

lc = []
for i in range(len(time)-7):
    bef = set(list(df[df['date']==time[i]]['uid']))
    aft = set(list(df[df['date']==time[i+7]]['uid']))
    stay = bef&aft
    per = round(100*len(stay)/len(bef),2)
    lc.append(per)
    
lc1 = []
for i in range(len(time)-1):
    bef = set(list(df[df['date']==time[i]]['uid']))
    aft = set(list(df[df['date']==time[i+1]]['uid']))
    stay = bef&aft
    per = round(100*len(stay)/len(bef),2)
    lc1.append(per)
x7 = time[0:-7]
chart1 = Line()
chart1.add_xaxis(x7)
chart1.add_yaxis('七日留存率/%',lc,is_smooth=True,label_opts=opts.LabelOpts(is_show=False),is_symbol_show = False,
                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=2,type_= 'solid' ))
chart1.set_global_opts(legend_opts=opts.LegendOpts(pos_right='10%',pos_top='2%'),
                     title_opts=opts.TitleOpts(title="用户留存率分布图",pos_left='40%'),)

chart1.render_notebook()

在这里插入图片描述

用户留存率保持在40%+,且没有跌破30%,说明获取到的数据中忠实用户较多。

  • 存在一定可能性是因为数据只爬取了特定用户群体的行为数据,结合创作者数量>用户数量可得到验证
  • 但一定程度可以反映软件留存这块做的不错

5 深度分析

客户价值判断

通过已观看数、完播率、点赞率进行用户聚类,价值判断

df1 = df.groupby(['uid']).agg({'item_id':'count','like':'sum','finish':'sum'})
df1['like_per'] = df1['like']/df1['item_id']
df1['finish_per'] = df1['finish']/df1['item_id']
ndf1 = np.array(df1[['item_id','like_per','finish_per']])#.shape
kmeans_per_k = [KMeans(n_clusters=k).fit(ndf1) for k in range(1,8)]
inertias = [model.inertia_ for model in kmeans_per_k]
chart = Line(init_opts=opts.InitOpts(width='560px',height='300px'))
chart.add_xaxis(range(1,8))
chart.add_yaxis("",inertias,label_opts=opts.LabelOpts(is_show=False),
                linestyle_opts=opts.LineStyleOpts(color='#F6325A',opacity=.7,curve=0,width=3,type_= 'solid' ))
chart.render_notebook()

在这里插入图片描述

n_cluster = 4
cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)
y_pre = cluster.labels_ # 查看聚好的类
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
silhouette_score(ndf1,y_pre) 
n_cluster = 3
cluster = KMeans(n_clusters=n_cluster,random_state=0).fit(ndf1)
y_pre = cluster.labels_ # 查看聚好的类
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
silhouette_score(ndf1,y_pre)

比较三类、四类的轮廓系数,确定聚为3类

c_ = [[],[],[]]
c_[0] = [87.998,9.1615,39.92]
c_[1] = [13.292,12.077,50.012]
c_[2] = [275.011,8.125,28.751]
bar = Bar(init_opts=opts.InitOpts(theme='macarons',width='1000px',height='400px')) # 添加分类(x轴)的数据
bar.add_xaxis(['播放数','点赞率(千分之)','完播率(百分之)'])
bar.add_yaxis('0', [round(i,2) for i in c_[0]], stack='stack0') 
bar.add_yaxis('1',[round(i,2) for i in c_[1]], stack='stack1') 
bar.add_yaxis('2',[round(i,2) for i in c_[2]], stack='stack2') 
bar.render_notebook()

在这里插入图片描述

可以大致对三类的内容做一个描述。

  1. 紫色 - 观看数量较少,但点赞完播率都非常高的:对内容观看有耐心,愿意产生额外性行为。因此通过观看兴趣内容打散、可以刺激用户观看更多视频。e.g.多推荐有悬念、连续性的短视频
  2. 绿色 - 观看数量适中,点赞率、完播率有所下滑,对这类用户的策略可以中和先后两种。
  3. 蓝色 - 观看数量非常多,点赞、完播率教室,这类用户更多会关注到视频前半段的内容,兴趣点可通过停留时间进行判断,但使用时间相对较长,反映产品依赖性,一定程度上来说算是核心用户。e.g.利用停留时间判断喜好,优化推荐算法,重点推荐前半段内容吸引力大的。

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/117950.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

YOLO系列环境配置及训练

目录 前言 一、下载所需 1、Anaconda安装 2、NVIDIA 驱动程序安装 3、CUDA安装 4、CUDNN下载及配置 二、环境配置 1、虚拟环境创建 2、Pytorch安装 3、pycharm环境切换及剩余库的安装 4、YOLO代码的测试及训练配置步骤 (1)测试 &#xff08…

PubDef:使用公共模型防御迁移攻击

对抗性攻击对机器学习系统的可靠性和安全性构成了严重威胁。通过对输入进行微小的变动,攻击者就可以导致模型生成完全错误的输出。防御这种攻击是一个很活跃的研究领域,但大多数提议的防御措施都存在重大的缺点。 这篇来自加州大学伯克利分校研究人员的…

初始JVM虚拟机

JVM组成 图解 程序计数器 在JVM线程私有的内存区域中。每个线程都有自己独立的程序计数器。 程序计数器用于存储当前线程正在执行的字节码指令的地址。指示着当前线程执行到了哪一条字节码指令。 堆 是线程共享的区域,用于存储对象的实例和数组对象; …

青翼科技-国产化ARM系列TES720D-KIT

板卡概述 TES720D-KIT是专门针对我司TES720D(基于复旦微FMQL20S400的全国产化ARM核心板)的一套开发套件,它包含1个TES720D核心板,加上一个TES720D-EXT扩展底板。 FMQL20S400是复旦微电子研制的全可编程融合芯片,在单…

K8S知识点(三)

(1)环境搭建-环境初始化 Centos的版本是有要求的必须是7.5或以上,否则安装出来的集群是有问题的Node节点可能加入不到集群中来 详细步骤 1.同时连接三台服务器:查看一下版本 是否正确 2.主机名解析,方便节点之间的…

【ARMv8 SIMD和浮点指令编程】浮点加减乘除指令——四则运算

浮点指令有专门的加减乘除四则运算指令,比如 FADD、FSUB、FMUL、FDIV 等。 1 FADD (scalar) 浮点加法(标量)。该指令将两个源 SIMD&FP 寄存器的浮点值相加,并将结果写入目标 SIMD&FP 寄存器。 该指令可以产生浮点异常。根据 FPCR 中的设置,异常会导致在 FPSR 中…

Vue Vue3

1、创建VUE3工程 使用vue-cli创建: ## 查看vue/cli版本,确保vue/cli版本在4.5.0以上 vue --version ## 安装或者升级你的vue/cli npm install -g vue/cli ## 创建 vue create vue_test ## 启动 cd vue_test npm run serve 使用vite创建: …

ClickHouse 学习之从高级到监控以及备份(二)

第 一 部分 高级篇 第 1 章 Explain 查看执行计划 在 clickhouse 20.6 版本之前要查看 SQL 语句的执行计划需要设置日志级别为 trace 才能可以看到,并且只能真正执行 sql,在执行日志里面查看。在 20.6 版本引入了原生的执行计划的语法。在 20.6.3 版本成…

计算机网络第4章-IPv4

IPv4数据报格式 IPv4数据报格式如下图所示 其中,有如下的关键字段需要特别注意: 版本(号): 版本字段共4比特,规定了数据报的IP协议版本。通过查看版本号吗,路由器能确定如何解释IP数据报的剩…

深度学习之基于Tensorflow卷积神经网络花卉识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 深度学习是一种机器学习方法,它通过模拟人脑神经网络的结构和功能来实现对数据的自动分析和学习。卷积神…

libpthread.so.0: cannot open shared object file: No such file or directory

linux 系统下 /lib64/libpthread so 库文件千万不要修改,不然后果很严重,像我好奇把/lib64/libpthread-2.17.so 改成 libpthread-2.17.so.old,因为 libpthread.so 和 libpthread.so.0 都是软链接,最终链接到的是 libpthread-2.17…

Docker安装Minio(稳定版)

1、安装 docker pull minio/minio:RELEASE.2021-06-17T00-10-46Z docker run -p 9000:9000 minio/minio:RELEASE.2021-06-17T00-10-46Z server /data 2、访问测试 3、MinIO自定义Access和Secret密钥 要覆盖MinIO的自动生成的密钥,您可以将Access和Secret密钥设为…

win10下.net framework 3.5 | net framework 4 无法安装解决方案

.net缺失解决方案 win10 .net framework 3.5组策略设置方案一方案二 win10 .net framework 4 参考文章 win10 .net framework 3.5 组策略设置 方案一 搜索组策略,依次展开“计算机配置”、“管理模板”,然后选择“系统”,找到指定可选组件…

SpringBoot整合Kafka (一)

📑前言 本文主要讲了SpringBoot整合Kafka文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是青衿🥇 ☁️博客首页:CSDN主页放风讲故事 🌄每日一句:…

极致性能优化:前端SSR渲染利器Qwik.js | 京东云技术团队

引言 前端性能已成为网站和应用成功的关键要素之一。用户期望快速加载的页面和流畅的交互,而前端框架的选择对于实现这些目标至关重要。然而,传统的前端框架在某些情况下可能面临性能挑战且存在技术壁垒。 在这个充满挑战的背景下,我们引入…

安全好用的远程协同运维软件重点推荐-行云管家

对于运维小伙伴而言,一个安全好用的远程协同运维软件至关重要,不仅可以提高工作率,降低工作风险,还能快速解决运维难题。目前市面上远程协同运维软件品牌比较多,这里我们小编给推荐行云管家IT远程协同运维平台。 安全…

LeetCode 面试题 16.17. 连续数列

文章目录 一、题目二、C# 题解 一、题目 给定一个整数数组,找出总和最大的连续数列,并返回总和。 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。…

IDEA中配置Maven

一、Maven下载 首先我们进入maven官方网站,进入网页后,点击Download去下载 下载免安装版,解压即可,解压至磁盘任意目录,尽量不要取中文名如下图: 二、配置Maven环境变量 复制Maven所在的路径 D:\maven\apache-maven-3.6.3,此电脑右键选择属性->高级系统设置->环境…

UE5——源码阅读——100——渲染——高清截图

创建事件,用于代码的调试 获取当前客户端所属的World 标记是否在进行重入绘制 是否开始缓存区可视化转存帧,主要针对请求屏幕截图或电影转存 判断是否需要高清截图 这下面这个函数执行高清截图 是否需要缓存区的可视化转存 判断是否开始渲染 如果…

黑盒测试用例设计方法之等价类划分法

等价类划分法是一种典型的黑盒测试用例设计方法。采用等价类划分法时,完全不用考虑程序内部结构,设计测试用例的唯一依据是软件需求规格说明书。 等价类 所谓等价类,是输入条件的一个子集合,该输入集合中的数据对于揭示程序中的…