STM32-高级定时器

以STM32F407为例。

高级定时器

高级定时器比通用定时器增加了可编程死区互补输出、重复计数器、带刹车(断路)功能,这些功能都是针对工业电机控制方面。

功能框图

16位向上、向下、向上/向下自动重装载计数器。

16位可编程预分频器,1~65536。

多达4个独立通道,用于:

        输入捕获

        输出比较

        PWM产生(边沿对齐模式和中心对齐模式)

        单脉冲模式输出

具有可编程死区时间的互补输出。

用外部信号控制定时器的同步电路,并将多个定时器互连在一起。

重复计数器,仅在给定次数的计数器循环后更新定时器寄存器。

中断输入,使定时器的输出信号处于复位状态或已知状态。

中断/DMA生成以下事件:

        更新:计数器溢出/下溢,计数器初始化(由软件或内部/外部触发)

        触发事件(计数器启动、停止、初始化或由内部/外部触发计数)

        输入捕获

        输出比较

        断路输入

支持增量(正交)编码器和霍尔传感器电路的定位目的。

触发输入外部时钟或逐周期电流管理。

时钟源

高级控制定时器可选四种时钟源:

内部时钟源CK_INT

外部时钟模式1:外部输入引脚TIx(x=1/2/3/4)

外部时钟模式2:外部触发输入ETR

内部触发输入ITRx(x=1/2/3/4)

内部时钟源CK_INT

时钟信号来自芯片内部,为主频168M(STM32F407为例)。一般情况下都是使用内部时钟。当从模式控制寄存器TIMx_SMCR:SMS位为000时使用内部时钟。

外部时钟模式1:外部输入引脚TIx(x=1/2/3/4)

时钟信号来自定时器的输入通道TI1/2/3/4,即TIMx_CH1/2/3/4。具体使用哪一路信号,由TIM_CCMRx:CCxS[1:0]配置。CCMR1控制TI1/2,CCMR2控制TI3/4。

如果来自外部时钟信号的频率过高或混杂有高频干扰信号的话,就需要使用滤波器对信号重新采样,来达到降频或者去除高频干扰的目的,具体由TIMx_CCMRx:ICxF[3:0]配置。

边沿检测的信号来自于滤波器的输出,在成为触发信号前需要进行边沿检测,决定是上升沿有效还是下降沿有效,具体由TIMx_CCER:CCxP和CCxNP位配置。

触发源有两个:滤波后的定时器输入1(TI1FP1)、滤波后的定时器输入2(TI1FP2),具体由TIMx_SMCR:TS[2:0]配置。

选定了触发源信号后,需要把信号连接到TRGI引脚,让触发信号成为外部时钟模式1的输入,最终等于CK_PSC,然后驱动计数器CNT计数。具体由TIMx_SMCR:SMS[2:0]配置,000时为外部时钟模式1。

经过上面的5个步骤后,最后只需使能计数器开始计数,外部时钟模式1的配置就算完成了。具体由TIMx_CR1:CEN位配置。

外部时钟模式2:外部触发输入ETR

时钟信号来自定时器的特定输入通道TIMx_ETR,只有一个。

外部触发极性来自ETR引脚输入的信号,可以选择上升沿有效还是下降沿有效,具体由TIMx_SMCR:ETP位配置。

由于ETRP的信号频率不得超过TIMx_CLK的1/4,当触发信号的频率很高时必须使用分频器来降频,具体由TIMx_SMCR:ETPS[1:0]配置。

如果ETRP的信号频率过高或混杂有高频干扰信号的话,就需要使用滤波器对信号重新采样,来达到降频或者去除高频干扰的目的,具体由TIMx_SMCRx:ETF[3:0]配置。fDTS是由内部时钟CK_INT分频得到,具体由TIMx_CR1:CKD[1:0]配置。

经过滤波器滤波的信号连接到ETPF引脚后,触发信号成为外部时钟模式2的输入,最终等于CK_PSC,然后驱动计数器CNT计数。具体由TIMx_SMCR:ECE位配置,1时为外部时钟模式2。

经过上面的5个步骤后,最后只需使能计数器开始计数,外部时钟模式2的配置就算完成了。具体由TIMx_CR1:CEN位配置。

内部触发输入ITRx(x=1/2/3/4)

内部触发输入是使用一个定时器作为另一个定时器的预分频器。硬件上高级控制定时器和通用定时器在内部连接在一起,可以实现定时器同步和级联。主模式的定时器可以对从模式定时器只需复位、启动、停止或提供时钟。

高级控制定时器和部分通用定时器(TIM2~TIM5)可以设置为主模式或从模式,TIM9和TIM10可以设置为从模式。

如图,主模式定时器TIM1为从模式定时器TIM2提供时钟,即TIM1用作TIM2的预分频器。

控制器

触发控制器用来针对片内外设输出触发信号,比如为其它定时器提供时钟和触发DAC/ADC转换。

编码器接口专门针对编码器计数而设计。

从模式控制器可以控制计数器复位、启动、递增/递减、计数。

时基单元

高级控制定时器时基单元组成:计数器寄存器(CNT,16位有效)、预分频器寄存器(PSC,16位有效)、自动重装载寄存器(ARR,16位有效)、重复计数器寄存器(RCR,8位有效,高级定时器专有)。

PSC预分频器寄存器有一个输入时钟CK_PSC和一个输出时钟CK_CNT。输入时钟CK_PSC就是时钟源的输出,输出时钟CK_CNT用来驱动计数器CNT计数。通过设置预分频器PSC的值可以得到不同的CK_CNT,值为1~65536分频。

三种计数模式:递增、递减、中心对齐。

递增计数模式:计数器从0开始计数,每一CK_CNT脉冲,计数器就加1,直到计数器的值与ARR值相等,然后计数器又从0开始计数并生成计数器上溢事件,如此循环。如果禁用重复计数器,在计数器生成上溢事件就马上生成更新事件(UEV);如果使能重复计数器,每生成一次上溢事件,重复计数器就减1,直到减为0时才会生成更新事件(UEV)。

递减计数模式:计数器从ARR值开始计数,每一CK_CNT脉冲,计数器就减1,直到计数器的值减为0,然后计数器又从ARR值开始计数并生成计数器下溢事件,如此循环。如果禁用重复计数器,在计数器生成下溢事件就马上生成更新事件(UEV);如果使能重复计数器,每生成一次下溢事件,重复计数器就减1,直到减为0时才会生成更新事件(UEV)。

中心对齐模式:计数器从0开始递增,直到计数器的值与(ARR-1)值相等,生成计数器上溢事件。然后计数器又从ARR开始递减,直到计数器的值为1时生成计数器下溢事件。然后重新重0开始,如此循环。每次发送计数器上溢和下溢事件都会生成更新事件。

ARR自动重装载寄存器用来存放与CNT比较值。如果CNT值等于ARR值,就递减重复计数器。可以通过TIMx_CR1:ARPE位控制自动重装载影子寄存器功能,如果ARPE位置1,只有在事件更新时才把TIMx_ARR值赋给影子寄存器。如果ARPE位置0,则修改TIMx_ARR值时马上赋给影子寄存器。

在基本/通用定时器发生上溢/下溢事件时直接就生成更新事件,但对于高级控制定时器在硬件结构上多出了RCR重复计数器寄存器,在定时器发生上溢/下溢事件会递减重复计数器的值,当重复计数器的值为0时才生成更新事件。在发生N+1个上溢/下溢事件时产生更新事件(N为RCR的值)。

输入捕获

输入捕获可以对输入的信号上升沿、下降沿或双边沿进行捕获,常用的有测量输入信号的脉宽和测量PWM输入信号的频率和占空比。

大概原理是当捕获到信号的跳变沿时,把CNT计数器的值锁存到捕获寄存器CCR中,把前后两次捕获到的CCR寄存器中的值相减,就可以算出脉宽和频率。如果捕获的脉宽的时间长度超过捕获定时器的周期,就会发生溢出,需要额外做处理。

TIx为输入通道,需要被测量的信号从定时器的外部引脚TIMx_CH1/2/3/4进入

当输入的信号存在高频干扰时,需要对输入信号进行滤波,根据采样定律(采样频率必须大于或等于两倍的输入信号),比如输入信号为1M,存在高频信号干扰时就要进行滤波,可以设置采样频率为2M,这样可以在保证采样到有效信号的基础上把高于2M的高频干扰信号过滤掉。

输入滤波器的配置由TIMx_CR1:CKD[1:0]和TIMx_CCMR1/2:ICxF[3:0]控制。根据ICxF位的描述,采样频率Fsample可以由Fck_int(内部时钟)和Fdts(Fck_int经过分频后的频率,分频因子由CKD[1:0]决定,1/2/4分频)分频后的时钟提供。

边沿检测器用来设置信号在捕获时什么边沿有效(上升沿、下降沿、双边沿),具体由TIMx_CCER:CCxP、CCxNP决定。

捕获通道:IC1/2/3/4。每个捕获通道都有对应的捕获寄存器CCR1/2/3/4,当发生捕获时,计数器CNT的值就会被锁存到捕获寄存器中。

输入通道TIx是用来输入信号的,捕获通道ICx是用来捕获输入信号的通道。一个输入通道的信号可以同时输入给两个捕获通道。比如TI1的信号经过滤波和边沿检测器后TI1FP1和TI1FP2可以进入到捕获通道IC1和IC2。输入通道和捕获通道的映射关系具体由TIMx_CCMR:CCxS[1:0]配置。

ICx的输出信号会经过预分频器,用于决定发生多少个事件时进行一次捕获。具体由TIMx_CCMR:ICxPSC配置。如果希望捕获信号的每一个边沿,则不分频。

经过预分频器的信号ICxPS是最终被捕获的信号,当发生捕获时(第一次),计数器CNT的值会被锁存到捕获寄存器TIMx_CCR中,还会产生CCxI中断,相应的中断位CCxIF(在SR寄存器中)会被置位,通过软件或读取CCR的值可以将CCxIF清0。如果发生第二次捕获(即重复捕获,CCR寄存器中已捕获到计数器值且CCxIF标志已置1),则捕获溢出标志位CCxOF(在SR寄存器中)会被置位,CCx_OF只能通过软件清零

输出比较

输出比较就是通过定时器的外部引脚对外输出控制信号

输出比较八种模式:冻结、将通道x(x=1/2/3/4)设置为匹配时输出有效电平、将通道x(x=1/2/3/4)设置为匹配时输出无效电平、翻转、强制变为无效电平、强制变为有效电平、PWM1和PWM2。具体有寄存器CCMRx:OCxM[2:0]配置,PWM模式是输出比较的特例,使用的也最多。

当计数器CNT的值跟比较寄存器CCR的值相等时,输出参考信号OCxREF的信号极性就会发生改变(OCxREF=1,是有效电平;OCxREF=0,是无效电平),并且会产生比较中断CCxl,SR寄存器中的标志位CCxIF会置位。然后OCxREF再经过一系列的控制后就成为真正的输出信号OCx/OCxN。

输出比较的输出信号最终是通过定时器的外部IO来输出的,分别是CH1/2/3/4,其中前面三个通道还有互补的输出通道CH1N/2N/3N。

 

死区发生器

在生成的参考信号OCxREF的基础上,可以插入死区时间,用于生成两路互补的输出信号OCx和OCxN。死区时间的大小具体由BDTR:DTG[7:0]配置。死区时间的大小必须根据与输出信号相连接的器件及其特性来调整。

举个例子:带死区的PWM信号的应用,以一个半桥驱动电路为例。

在这个半桥驱动电路,Q1导通、Q2截止。如果想让Q1截止、Q2导通,肯定是先让Q1截止一段时间,再等待一段时间才让Q2导通,这个等待时间就是死区时间。

因为Q1关闭需要时间(由MOS管的工艺决定),如果Q1关闭后马上打开Q2,那么此时一段时间内相当于Q1和Q2都导通了,电路会短路。

输出控制

在输出比较的输出控制中,参考信号OCxREF在经过死区发生器后会产生两路带死区的互补信号OCx_DT和OCxN_DT(通道1~3才有互补信号,通道4没有),这两路带死区的互补信号然后进入输出控制电路。如果没有加入死区控制(不经过死区发生器),那么进入输出控制电路的信号就直接是OCxREF。

进入输出控制电路的信号会被分为两路(一路为原始信号,一路为被反向的信号),具体由CCER:CCxP、CCxNP位控制。经过极性选择的信号是否由OCx引脚输出到外部引脚CHx/CHxN则由CCER:CxE/CxNE位配置。

如果加入了断路(刹车)功能,则断路和死区寄存器TIMx_BDTR:MOE、OSSI和OSSR位会共同影响输出的信号。

断路功能

断路功能就是电机控制的刹车功能。使能断路功能时,根据相关控制位状态修改输出信号电平。在任何情况下,OCx和OCxN输出都不能同时为有效电平,这关系到电机控制常用的H桥电路结构原因。

断路源可以是时钟故障事件,其内部复位时钟控制器的时钟安全系统(CSS)生成,也可以是外部断路输入IO,两者是或运算关系。

系统复位启动都默认关闭断路功能,将断路和死区寄存器TIMx_BDTR:BKE=1,使能断路功能。可通过TIMx_BDTR:BKP位设置断路输入引脚的有效电平,为1时输入BRK为高电平有效,否则低电平有效。

发生断路时,将产生以下效果:

TIMx_BDTR:MOE主输出模式使能位被清零,输出处于无效、空闲或复位状态。

根据相关控制位状态去控制输出通道引脚电平;当使能通道互补输出时,会根据情况自动控制输出通道电平。

将TIMx_SR:BIF位置1,并可产生中断和DMA传输请求。

如果TIMx_BDTR:AOE自动输出使能位置1,则MOE位会在发生下一个UEV事件时自动再次置1。

实验环节:PWM互补输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/117407.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

时间序列预测模型实战案例(八)(Informer)BestPaper论文模型Informer代码实战讲解

论文地址->Informer论文地址PDF点击即可阅读 代码地址-> 论文官方代码地址点击即可跳转下载GIthub链接 本文介绍 本篇博客带大家看的是Informer模型进行时间序列预测的实战案例,它是在2019年被提出并在ICLR 2020上被评为Best Paper,可以说Inform…

JAVA应用中线程池设置多少合适?

目录 1、机器配置: 2、核心线程数 3、最大线程数多少合适? 4、理论基础 5、测试验证 一个线程跑满一个核心的利用率 6个线程 12 个线程:所有核的cpu利用率都跑满 有io操作 6、计算公式 7、决定最大线程数的流程: 1、机器…

HCIA数据通信——路由协议

数据通信——网络层(OSPF基础特性)_咕噜跳的博客-CSDN博客 数据通信——网络层(RIP与BGP)_咕噜跳的博客-CSDN博客 上述是之前写的理论知识部分,懒得在实验中再次提及了。这次做RIP协议以及OSPF协议。不过RIP协议不常用…

【Tricks】vscode winscp进行服务器容器连接(含修改初始密码)

1:获取docker的登陆信息 例如节点(host)、端口(port)、密码(passwd)等信息,这个自己找组内的前辈获取即可 2:配置config文件 找到vscode里面ssh处的config文件 人工找…

【unity3D】使用RawImage实现UI上的帧动画

💦本专栏是我关于游戏开发的笔记 🈶本篇是一个简短的小知识点 使用RawImage实现帧动画 找一个帧动画连续的图片拖到工程中,将Texture Type改成Sprite(2D和UI),点击apply应用上 在工程中新建一个RawImage,将…

Qt QtCreator添加自定义注释

在写代码的时候我们为了规范化,一般会加文件注释、类注释和函数注释;用注释来说明我们的代码,也方便模块化开发,那么我们在写注释的时候经常会写一些重复的内容,我们会复制粘贴。这样一来二去,就显得很繁琐…

循环语句--JAVA

循环语句 for循环结构 范例 执行流程 while循环结构 格式 范例 流程 for和while的区别 条件控制语句所控制的自增变量,在for循环结束后,就不可以继续使用了 条件控制语句所控制的自增变量,在while循环结束后,还可以继续使用了 数据类型 基本数据类型 char byte boolean …

redis 网课笔记

缓存 缓存雪崩 缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库。 解决方案 给不同的key的TTL添加随机值利于Redis集群提高服务的可用性 哨兵模式、集群模式给缓存业务添加降级限流策略 ngxin或spring cloud gateway给业务…

el-tree中展示项换行展示

文章目录 效果如下所示:没有换行展示的效果修改样式换行之后的展示效果 想要了解el-tree使用的详情往下看代码和数据如下所示Vue代码中可能使用到的数据如下Vue的代码如下:没有换行展示的效果换行之后的展示效果样式调试 效果如下所示: 没有…

JSP 学生成绩查询管理系统eclipse开发sql数据库serlvet框架bs模式java编程MVC结构

一、源码特点 JSP 学生成绩查询管理系统 是一套完善的web设计系统,对理解JSP java编程开发语言有帮助,比较流行的servlet框架系统具有完整的源代码和数据库,eclipse开发系统主要采用B/S模式 开发。 java 学生成绩查询管理系统 代码下载链接…

【MySQL】用户管理权限控制

文章目录 前言一. 用户管理1. 创建用户2. 删除用户3. 修改用户密码 二. 权限控制1. 用户授权2. 查看权限3. 回收权限 结束语 前言 MySQL的数据其实也以文件形式保存,而登录信息同样保存在文件中 MySQL的数据在Linux下默认路径是/var/lib/mysql 登录MySQL同样也可以…

深度学习_9_图片分类数据集

散装代码: import matplotlib.pyplot as plt import torch import torchvision from torch.utils import data from torchvision import transforms from d2l import torch as d2ld2l.use_svg_display()# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式…

Python用RoboBrowser库写一个通用爬虫模版

以下是一个使下载lianjia内容的Python程序,爬虫IP服务器为duoip的8000端口。 from robobrowser import RoboBrowser# 创建一个RoboBrowser对象 browser RoboBrowser(user_agentMozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) …

【网络协议】聊聊CND如何进行提升系统读性能

我们知道对于京东这种仓储来说,其实并不是在北京有一个仓储中心,而是针对全国主要的地方,北京、上海、广州、杭州,郑州等地方都有自己的仓储中心,当用户下单后,就会根据最近的仓储进行发货,不仅…

消息中间件-RabbitMQ介绍

一、基础知识 1. 什么是RabbitMQ RabbitMQ是2007年发布,是一个在AMQP(高级消息队列协议)基础上完成的,简称MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法,由Erlang(专门针对于大…

perl列表创建、追加、删除

简介 perl 列表追加元素 主要是通过push和unshift函数来实现。其中,push是追加到列表尾,unshift是追加到列表头。 perl列表删除元素 主要是通过pop和shift函数来实现。其中,pop是从列表尾删除一个元素, shift是从列表头删除一…

java入门-JDK下载与安装

1、下载jdk Java 的产品叫JDK(Java Development Kit: Java开发者工具包),必须安装JDK才能使用java 1、官网地址 https://www.oracle.com/java/ https://www.oracle.com/java/technologies/downloads/ 目前比较稳定的版本为 JDK17. 我们就安…

【GEE】4、 Google 地球引擎中的数据导入和导出

1简介 在本模块中,我们将讨论以下概念: 如何将您自己的数据集引入 GEE。如何将来自遥感数据的值与您自己的数据相关联。如何从 GEE 导出特征。 2背景 了解动物对环境的反应对于了解如何管理这些物种至关重要。虽然动物被迫做出选择以满足其基本需求&am…

Docker Stack部署应用详解+Tomcat项目部署详细实战

Docker Stack 部署应用 概述 单机模式下,可以使用 Docker Compose 来编排多个服务。Docker Swarm 只能实现对单个服务的简单部署。而Docker Stack 只需对已有的 docker-compose.yml 配置文件稍加改造就可以完成 Docker 集群环境下的多服务编排。 stack是一组共享…

Scala和Play WS库编写的爬虫程序

使用Scala和Play WS库编写的爬虫程序,该程序将爬取网页内容: import play.api.libs.ws._ import scala.concurrent.ExecutionContext.Implicits.global ​ object BaiduCrawler {def main(args: Array[String]): Unit {val url ""val proxy…