【安全】Java幂等性校验解决重复点击(6种实现方式)

目录

    • 一、简介
      • 1.1 什么是幂等?
      • 1.2 为什么需要幂等性?
      • 1.3 接口超时,应该如何处理?
      • 1.4 幂等性对系统的影响
    • 二、Restful API 接口的幂等性
    • 三、实现方式
      • 3.1 数据库层面,主键/唯一索引冲突
      • 3.2 数据库层面,乐观锁
      • 3.3 数据库层面,悲观锁(select for update)【不推荐】
      • 3.4 数据库层面,状态机
      • 3.5 应用层面,token令牌【不推荐】
      • 3.6 应用层面,分布式锁【推荐】
    • 四、Java 代码实现
      • 4.1 @NotRepeat 注解
      • 4.2 AOP 切面
      • 4.3 RedisUtils 工具类
      • 4.4 测试类
      • 4.5 测试结果

一、简介

1.1 什么是幂等?

幂等 是一个数学与计算机科学概念,英文 idempotent [aɪˈdempətənt]。

  • 在数学中,幂等用函数表达式就是:f(x) = f(f(x))。比如 求绝对值 的函数,就是幂等的,abs(x) = abs(abs(x))。
  • 计算机科学中,幂等表示一次和多次请求某一个资源应该具有同样的作用

满足幂等条件的性能叫做 幂等性

1.2 为什么需要幂等性?

我们开发一个转账功能,假设我们调用下游接口 超时 了。一般情况下,超时可能是网络传输丢包的问题,也可能是请求时没送到,还有可能是请求到了,返回结果却丢了。这时候我们是否可以 重试 呢?如果重试的话,是否会多赚了一笔钱呢?

在这里插入图片描述

在我们日常开发中,会存在各种不同系统之间的相互远程调用。调用远程服务会有三个状态:成功失败超时

前两者都是明确的状态,但超时则是 未知状态。我们转账 超时 的时候,如果下游转账系统做好 幂等性校验,我们判断超时后直接发起重试,既可以保证转账正常进行,又可以保证不会多转一笔

日常开发中,需要考虑幂等性的场景:

  • 前端重复提交:比如提交 form 表单时,如果快速点击提交按钮,就可能产生两条一样的数据。
  • 用户恶意刷单:例如在用户投票这种功能时,如果用户针对一个用户进行重复提交投票,这样会导致接口接收到用户重复提交的投票信息,会使投票结果与事实严重不符。
  • 接口超时重复提交:很多时候 HTTP 客户端工具都默认开启超时重试的机制,尤其是第三方调用接口的时候,为了防止网络波动等造成的请求失败,都会添加重试机制,导致一个请求提交多次。
  • MQ重复消费:消费者读取消息时,有可能会读取到重复消息。

1.3 接口超时,应该如何处理?

如果我们调用下游接口超时了,我们应该如何处理?其实从生产者和消费者两个角度来看,有两种方案处理:

  • 方案一:消费者角度。在接口超时后,调用下游接口检查数据状态
    • 如果查询到是成功,就走成功流程;
    • 如果是失败,就按失败处理(重新请求)。

在这里插入图片描述

  • 方案二:生产者角度。下游接口支持幂等,上有系统如果调用超时,发起重试即可。

在这里插入图片描述

两种方案都是可以的,但如果是 MQ重复消费的场景,方案一处理并不是很妥当,所以我们还是要求下游系统 对外接口支持幂等

1.4 幂等性对系统的影响

幂等性是为了简化客户端逻辑处理,能防止重复提交等操作,但却增加了服务端的逻辑复杂性和成本,其主要是:

  • 把并行执行的功能改为串行执行,降低了执行效率。
  • 增加了额外控制幂等的业务逻辑,复杂化了业务功能。

在使用前,需要根据实际业务场景具体分析,除了业务上的特殊要求外,一般情况下不需要引入接口的幂等性。

二、Restful API 接口的幂等性

Restful 推荐的几种 HTTP 接口方法中,不同的请求对幂等性的要求不同:

请求类型是否幂等描述
GETGET 方法用于获取资源。一般不会也不应当对系统资源进行改变,所以是幂等的。
POSTPOST 方法用于创建新的资源。每次执行都会新增数据,所以不是幂等的。
PUT不一定PUT 方法一般用于修改资源。该操作分情况判断是否满足幂等,更新中直接根据某个值进行更新,也能保持幂等。不过执行累加操作的更新是非幂等的。
DELETE不一定DELETE 方法一般用于删除资源。该操作分情况判断是否满足幂等,当根据唯一值进行删除时,满足幂等;但是带查询条件的删除则不一定满足。例如:根据条件删除一批数据后,又有新增数据满足该条件,再执行就会将新增数据删除,需要根据业务判断是否校验幂等。

三、实现方式

3.1 数据库层面,主键/唯一索引冲突

日常开发中,为了实现接口幂等性校验,可以这样实现:

  1. 提前在数据库中为唯一存在的字段(如:唯一流水号 bizSeq 字段)添加唯一索引,或者直接设置为主键。
  2. 请求过来,直接将数据插入、更新到数据库中,并进行 try-catch 捕获。
  3. 如果抛出异常,说明为重复请求,可以直接返回成功,或提示请求重复。

补充: 也可以新建一张 防止重复点击表,将唯一标识放到表中,存为主键或唯一索引,然后配合 tra-catch 对重复点击的请求进行处理。

伪代码如下:

/**
 * 幂等处理
 */
Rsp idempotent(Request req){
  
    try {
        insert(req);
    } catch (DuplicateKeyException e) {
        //拦截是重复请求,直接返回成功
        log.info("主键冲突,是重复请求,直接返回成功,流水号:{}",bizSeq);
        return rsp;
    }

    //正常处理请求
    dealRequest(req);

    return rsp;
}

3.2 数据库层面,乐观锁

乐观锁:乐观锁在操作数据时,非常乐观,认为别人不会同时在修改数据。因此乐观锁不会上锁,只是在执行更新的时候判断一下,在此期间是否有人修改了数据。

乐观锁的实现:

就是给表多加一列 version 版本号,每次更新数据前,先查出来确认下是不是刚刚的版本号,没有改动再去执行更新,并升级 version(version=version+1)。

比如,我们更新前,先查一下数据,查出来的版本号是 version=1。

select order_id,version from order where order_id='666'

然后使用 version=1 和 订单ID 一起作为条件,再去更新:

update order set version = version +1status='P' where  order_id='666' and version =1

最后,更新成功才可以处理业务逻辑,如果更新失败,默认为重复请求,直接返回。

流程图如下:

为什么版本号建议自增呢?

因为乐观锁存在 ABA 的问题,如果 version 版本一直是自增的就不会出现 ABA 的情况。

3.3 数据库层面,悲观锁(select for update)【不推荐】

悲观锁:通俗点讲就是很悲观,每次去操作数据时,都觉得别人中途会修改,所以每次在拿数据的时候都会上锁。官方点讲就是,共享资源每次只给一个线程使用,其他线程阻塞,用完后再把资源转让给其它资源。

悲观锁的实现:

在订单业务场景中,假设先查询出订单,如果查到的是处理中状态,就处理完业务,然后再更新订单状态为完成。如果查到订单,并且不是处理中的状态,则直接返回。

可以使用数据库悲观锁(select … for update)解决这个问题:

begin;  # 1.开始事务
select * from order where order_id='666' for update # 查询订单,判断状态,锁住这条记录
ifstatus !=处理中){
   //非处理中状态,直接返回;
   return ;
}
## 处理业务逻辑
update order set status='完成' where order_id='666' # 更新完成
commit; # 5.提交事务

注意:

  • 这里的 order_id 需要是主键或索引,只用行级锁锁住这条数据即可,如果不是主键或索引,会锁住整张表。
  • 悲观锁在同一事务操作过程中,锁住了一行数据。这样 别的请求过来只能等待,如果当前事务耗时比较长,就很影响接口性能。所以一般 不建议用悲观锁的实现方式

3.4 数据库层面,状态机

很多业务表,都是由状态的,比如:转账流水表,就会有 0-待处理,1-处理中,2-成功,3-失败的状态。转账流水更新的时候,都会涉及流水状态更新,即涉及 状态机(即状态变更图)。我们可以利用状态机来实现幂等性校验。

状态机的实现:

比如:转账成功后,把 处理中 的转账流水更新为成功的状态,SQL 如下:

update transfor_flow set status = 2 where biz_seq='666' and status = 1;

流程图如下:

在这里插入图片描述

  • 第1次请求来时,bizSeq 流水号是 666,该流水的状态是处理中,值是 1,要更新为 2-成功的状态,所以该 update 语句可以正常更新数据,sql 执行结果的影响行数是 1,流水状态最后变成了 2。
  • 第2次请求也过来了,如果它的流水号还是 666,因为该流水状态已经变为 2-成功的状态,所以更新结果是0,不会再处理业务逻辑,接口直接返回。

伪代码实现如下:

Rsp idempotentTransfer(Request req){
    String bizSeq = req.getBizSeq();
    int rows= "update transfr_flow set status=2 where biz_seq=#{bizSeq} and status=1;"
    if(rows==1){
        log.info(“更新成功,可以处理该请求”);
        //其他业务逻辑处理
        return rsp;
    } else if(rows == 0) {
        log.info(“更新不成功,不处理该请求”);
        //不处理,直接返回
        return rsp;
    }

    log.warn("数据异常")
    return rsp:
}

3.5 应用层面,token令牌【不推荐】

token 唯一令牌方案一般包括两个请求阶段:

  1. 客户端请求申请获取请求接口用的token,服务端生成token返回;
  2. 客户端带着token请求,服务端校验token。

流程图如下:

在这里插入图片描述

  1. 客户端发送请求,申请获取 token。
  2. 服务端生成全局唯一的 token,保存到 redis 中(一般会设置一个过期时间),然后返回给客户端。
  3. 客户端带着 token,发起请求。
  4. 服务端去 redis 确认 token 是否存在,一般用 redis.del(token) 的方式,如果存在会删除成功,即处理业务逻辑,如果删除失败,则直接返回结果。

补充: 这种方式个人不推荐,说两方面原因:

  1. 需要前后端联调才能实现,存在沟通成本,最终效果可能与设想不一致。
  2. 如果前端多次获取多个 token,还是可以重复请求的,如果再在获取 token 处加分布式锁控制,就不如直接用分布式锁来控制幂等性了,即下面这种解决方式。

3.6 应用层面,分布式锁【推荐】

分布式锁 实现幂等性的逻辑就是,请求过来时,先去尝试获取分布式锁,如果获取成功,就执行业务逻辑,反之获取失败的话,就舍弃请求直接返回成功。

流程图如下:

  • 分布式锁可以使用 Redis,也可以使用 Zookeeper,不过 Redis 相对好点,比较轻量级。
  • Redis 分布式锁,可以使用 setIfAbsent() 来实现,注意分布式锁的 key 必须为业务的唯一标识
  • Redis 执行设置 key 的动作时,要设置过期时间,防止释放锁失败。这个过期时间不能太短,太短拦截不了重复请求,也不能设置太长,请求量多的话会占用存储空间。

四、Java 代码实现

4.1 @NotRepeat 注解

@NotRepeat 注解用于修饰需要进行幂等性校验的类。

NotRepeat.java

import java.lang.annotation.*;

/**
 * 幂等性校验注解
 */
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface NotRepeat {

}

4.2 AOP 切面

AOP切面监控被 @Idempotent 注解修饰的方法调用,实现幂等性校验逻辑。

IdempotentAOP.java

import com.demo.util.RedisUtils;
import lombok.extern.slf4j.Slf4j;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.After;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

import javax.annotation.Resource;
import javax.servlet.http.HttpServletRequest;
import java.util.concurrent.TimeUnit;

/**
 * 重复点击校验
 */
@Slf4j
@Aspect
@Component
public class IdempotentAOP {
    
    /** Redis前缀 */
    private String API_IDEMPOTENT_CHECK = "API_IDEMPOTENT_CHECK:";

    @Resource
    private HttpServletRequest request;
    @Resource
    private RedisUtils redisUtils;

    /**
     * 定义切面
     */
    @Pointcut("@annotation(com.demo.annotation.NotRepeat)")
    public void notRepeat() {
    }

    /**
     * 在接口原有的方法执行前,将会首先执行此处的代码
     */
    @Before("notRepeat()")
    public void doBefore(JoinPoint joinPoint) {
        String uri = request.getRequestURI();

        // 登录后才做校验
        UserInfo loginUser = AuthUtil.getLoginUser();
        if (loginUser != null) {
            assert uri != null;
            String key = loginUser.getAccount() + "_" + uri;
            log.info(">>>>>>>>>> 【IDEMPOTENT】开始幂等性校验,加锁,account: {},uri: {}", loginUser.getAccount(), uri);

            // 加分布式锁
            boolean lockSuccess = redisUtils.setIfAbsent(API_IDEMPOTENT_CHECK + key, "1", 30, TimeUnit.MINUTES);
            log.info(">>>>>>>>>> 【IDEMPOTENT】分布式锁是否加锁成功:{}", lockSuccess);
            if (!lockSuccess) {
                if (uri.contains("contract/saveDraftContract")) {
                    log.error(">>>>>>>>>> 【IDEMPOTENT】文件保存中,请稍后");
                    throw new IllegalArgumentException("文件保存中,请稍后");

                } else if (uri.contains("contract/saveContract")) {
                    log.error(">>>>>>>>>> 【IDEMPOTENT】文件发起中,请稍后");
                    throw new IllegalArgumentException("文件发起中,请稍后");
                }
            }
        }
    }

    /**
     * 在接口原有的方法执行后,都会执行此处的代码(final)
     */
    @After("notRepeat()")
    public void doAfter(JoinPoint joinPoint) {
        // 释放锁
        String uri = request.getRequestURI();
        assert uri != null;
        UserInfo loginUser = SysUserUtil.getloginUser();
        if (loginUser != null) {
            String key = loginUser.getAccount() + "_" + uri;
            log.info(">>>>>>>>>> 【IDEMPOTENT】幂等性校验结束,释放锁,account: {},uri: {}", loginUser.getAccount(), uri);
            redisUtils.del(API_IDEMPOTENT_CHECK + key);
        }
    }
}

4.3 RedisUtils 工具类

RedisUtils.java

import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;

import java.util.Arrays;
import java.util.concurrent.TimeUnit;


/**
 * redis工具类
 */
@Slf4j
@Component
public class RedisUtils {

    /**
     * 默认RedisObjectSerializer序列化
     */
    @Autowired
    private RedisTemplate<String, Object> redisTemplate;

    /**
     * 加分布式锁
     */
    public boolean setIfAbsent(String key, String value, long timeout, TimeUnit unit) {
        return redisTemplate.opsForValue().setIfAbsent(key, value, timeout, unit);
    }

    /**
     * 释放锁
     */
    public void del(String... keys) {
        if (keys != null && keys.length > 0) {
            //将参数key转为集合
            redisTemplate.delete(Arrays.asList(keys));
        }
    }
}

4.4 测试类

OrderController.java

import com.demo.annotation.NotRepeat;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.Arrays;
import java.util.List;

/**
 * 幂等性校验测试类
 */
@RequestMapping("/order")
@RestController
public class OrderController {

    @NotRepeat
    @GetMapping("/orderList")
    public List<String> orderList() {
        // 查询列表
        return Arrays.asList("Order_A", "Order_B", "Order_C");
        // throw new RuntimeException("参数错误");
    }
}

4.5 测试结果

请求地址:http://localhost:8080/order/orderList

日志信息如下:

在这里插入图片描述

经测试,加锁后,正常处理业务、抛出异常都可以正常释放锁。

整理完毕,完结撒花~ 🌻





参考地址:

1.实战,实现幂等的8种方案!https://blog.csdn.net/sufu1065/article/details/122335349

2.Java中的幂等性,https://blog.csdn.net/JewaveOxford/article/details/103578372

3.Spring Boot 实现接口幂等性的 4 种方案!还有谁不会?https://blog.csdn.net/youanyyou/article/details/114464708

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/117305.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

学习Opencv(蝴蝶书/C++)相关——1. 前言 和 第1章.概述

文章目录 1. 整体架构1.1 OpenCV3.01.2 Opencv4.xX. 在线文档X.1 Opencv cheatsheet(小抄)1. 整体架构 1.1 OpenCV3.0 对于Opencv3.x版本,网上最常见的图,图自OpenCV Tutorial-Itseez 现在已经不是500+的算法了,而是2500+,详见:About

STM32G030F6P6 芯片实验 (二)

STM32G030F6P6 芯片实验 (二) Hello World - GPIO LED 尝试了下, 从 0 开始建 MDK HAL M0plus Project, 成功点亮 LED了。 但是 ST-LINK跑着跑着, 码飞了! 不知飞哪去了。 只好拿 MX 建了个 MDK Base。 呼叫 SysTick HAL_Delay(), 切换 LED。 基本上都是一样的用法, 只是换…

ICCV2023 Tracking paper汇总(一)(多目标跟随、单目标跟随等)

一、PVT: A Simple End-to-End Latency-Aware Visual Tracking Framework paper&#xff1a; https://openaccess.thecvf.com/content/ICCV2023/papers/Li_PVT_A_Simple_End-to-End_Latency-Aware_Visual_Tracking_Framework_ICCV_2023_paper.pdf github&#xff1a; https://…

java EE 进阶

java EE 主要是学框架(框架的使用,框架的原理) 框架可以说是实现了部分功能的半成品,还没装修的毛坯房,然后我们再自己打造成自己喜欢的成品 这里学习四个框架 : Spring ,Spring Boot, Spring MVC, Mybatis JavaEE 一定要多练习,才能学好 Maven 目前我们主要用的两个功能: …

图像新型拼接

道路摄像头拼接 拼接道路上的摄像头&#xff0c;比较麻烦&#xff0c;如图所示 前后的摄像头都是如此&#xff0c;那么如何拼接摄像头画面呢&#xff0c;像下面这样拼接 测试代码 测试一下代码&#xff0c;使用python import cv2 import numpy as npimg cv2.imread("…

antv/g6之交互模式mode

什么是mode 在 AntV G6 中&#xff0c;“mode” 是用于配置图表交互模式的一种属性。通过设置 “mode”&#xff0c;可以控制图表的行为&#xff0c;以满足不同的交互需求。可能在不同的场景需要展现的交互行为不一样。比如查看模式下点击一个点就选中的状态&#xff0c;在编辑…

数据可视化:折线图

1.初看效果 &#xff08;1&#xff09;效果一 &#xff08;2&#xff09;数据来源 2.JSON数据格式 其实JSON数据在JAVA后期的学习过程中我已经是很了解了&#xff0c;基本上后端服务器和前端交互数据大多是采用JSON字符串的形式 &#xff08;1&#xff09;JSON的作用 &#…

本地idea远程调试服务器程序

本文主要介绍idea本地调试远程服务器程序的方式。相信很多同行跟我一样&#xff0c;在最初接触公司项目的时候&#xff0c;遇到测试提出的缺陷&#xff0c;往往会在本地进行调试、替换jar包远程调试等方式&#xff0c;本地调试往往会导致数据和环境不一致的问题使得问题无法复现…

没想到这么齐全!这份 Python 实战干货yyds

今天我分享一些Python学习神器资料&#xff0c;有需要的小伙文末自行免费领取。 1.200Python练手案例&#xff1a; 2.Python全套视频教程等&#xff1a; 3.浙大Python学习套装&#xff1a; * 4.Python实战案例&#xff1a; 5.Pandas学习大礼包 6.学习手册大礼包 Python知识…

CSAPP BOMB LAB part3

CSAPP BOMB LAB part3 phase_4 bomb.s phase_4的代码: 格式: 40102e行&#xff0c;比较0x8rsp的值和0xe, 需要让0x8rsp小于0xe, 然后跳转到40103a, func函数根据bomb.s 转化为c代码&#xff1a; 这个直接参考了知乎网友的翻译&#xff0c; func4的返回值等于0, 跳转到40…

分治法——找众数

分治法——找众数 要求&#xff1a; 寻找整数数组的众数&#xff0c;如果存在多个众数&#xff0c;则返回权值最小的那个 第一步&#xff1a; 要利用分治法找众数&#xff0c;首先就先要使数组有序。这里&#xff0c;我们用C语言库中的qsort进行快排&#xff1a; qsort(nums…

3D高斯泼溅(Splatting)简明教程

在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D场景编辑器 3D 高斯泼溅&#xff08;Splatting&#xff09;是用于实时辐射场渲染的 3D 高斯分布描述的一种光栅化技术&#xff0c;它允许实时渲染从小图像样…

直流无刷电机(BLDC)六步换相驱动

直流无刷电机&#xff08;BLDC&#xff09;六步换相驱动 文章目录 直流无刷电机&#xff08;BLDC&#xff09;六步换相驱动1. 前言2. 六步换相原理3. 电角度与机械角度4. 动手实践4.1 霍尔输出表测量4.2 换向控制4.3 代码编写 5. 总结 1. 前言 直流无刷电机相对直流有刷电机具…

Redis之Java操作Redis的使用

&#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&#x1f389; &#x1f3c5;我是君易--鑨&#xff0c;一个在CSDN分享笔记的博主。&#x1f4da;&#x1f4da; &#x1f31f;推荐给大家我的博客专栏《Redis实战开发》。&#x1f3af;&#x1f3af; …

Android java Handler sendMessage使用Parcelable传递实例化对象,我这里传递Bitmap 图片数据

一、Bundle给我们提供了一个putParcelable(key,value)的方法。专门用于传递实例化对象。 二、我这里传递Bitmap 图片数据&#xff0c;实际使用可以成功传统图像数据。 发送&#xff1a;Bundle bundle new Bundle();bundle.putParcelable("bitmap",bitmap);msg.setD…

【GitLab CI/CD、SpringBoot、Docker】GitLab CI/CD 部署SpringBoot应用,部署方式Docker

介绍 本文件主要介绍如何将SpringBoot应用使用Docker方式部署&#xff0c;并用Gitlab CI/CD进行构建和部署。 环境准备 已安装Gitlab仓库已安装Gitlab Runner&#xff0c;并已注册到Gitlab和已实现基础的CI/CD使用创建Docker Hub仓库&#xff0c;教程中使用的是阿里云的Docker…

【漏洞复现】Apache_Tomcat7+ 弱口令 后台getshell漏洞

感谢互联网提供分享知识与智慧&#xff0c;在法治的社会里&#xff0c;请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞扫描3、漏洞验证 说明内容漏洞编号漏洞名称Tomcat7 弱口令 && 后台getshell漏洞漏洞评级高…

【Java】Beanshell下通过java操作Excel(xlsx格式)文件读写

一、概述 在项目开发中往往需要使用到Excel的导入和导出,导入就是从Excel中导入到DB中,而导出就是从DB中查询数据然后使用POI写到Excel上。 操作Excel目前比较流行的就是Apache POI和阿里巴巴的easyExcel ! Excel文件处理的主流技术包括: Apache POI 、 JXL 、 Alibaba Ea…

机器学习---SVM目标函数求解,SMO算法

1. 线性可分支持向量机 1.1 定义输入数据 假设给定⼀个特征空间上的训练集为&#xff1a; 其中&#xff0c;(x , y )称为样本点。 x 为第i个实例&#xff08;样本&#xff09;。 y 为x 的标记&#xff1a; 当y 1时&#xff0c;x 为正例&#xff1b;当y −1时&#xff0c;x…

16. 机器学习 - 决策树

Hi&#xff0c;你好。我是茶桁。 在上一节课讲SVM之后&#xff0c;再给大家将一个新的分类模型「决策树」。我们直接开始正题。 决策树 我们从一个例子开始&#xff0c;来看下面这张图&#xff1a; 假设我们的x1 ~ x4是特征&#xff0c;y是最终的决定&#xff0c;打比方说是…