3D高斯泼溅(Splatting)简明教程

在这里插入图片描述

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D场景编辑器

3D 高斯泼溅(Splatting)是用于实时辐射场渲染的 3D 高斯分布描述的一种光栅化技术,它允许实时渲染从小图像样本中学习到的逼真场景。 本文将详细介绍它的工作原理以及它对图形学的未来意味着什么。

1、什么是 3D 高斯泼溅?

3D 高斯泼溅的核心是一种光栅化技术。 这意味着:

  • 有描述场景的数据。
  • 在屏幕上绘制数据。
  • 类似于计算机图形学中的三角形光栅化,用于在屏幕上绘制许多三角形:
    在这里插入图片描述

然而,它不是三角形,而是高斯分布。 这是一个栅格化的高斯函数,为了清晰起见,绘制了边框:

在这里插入图片描述

高斯泼溅由以下参数描述:

  • 位置:它所在的位置 (XYZ)
  • 协方差:如何拉伸/缩放(3x3 矩阵)
  • 颜色:它是什么颜色(RGB)
  • Alpha:透明度如何 (α)

在实践中,会同时绘制多个高斯曲线:
在这里插入图片描述

这是三个高斯。 那么 700 万高斯呢?
在这里插入图片描述

这是每个高斯光栅化完全不透明的样子:

在这里插入图片描述

这是对 3D 高斯分布的非常简短的概述。 接下来,让我们逐步完成本文中描述的完整过程。

1、3D高斯泼溅原理

3D高斯泼溅的实现原理分为一下几个部分:

  • 运动结构恢复:利用SfM得到点云
  • 点云转高斯分布
  • 模型训练
  • 光栅化

1.1 运动结构恢复

第一步是使用运动结构恢复 (SfM: Structure from Motion) 方法从一组图像中估计点云。 这是一种从一组 2D 图像估计 3D 点云的方法。 这可以通过 COLMAP 库来完成。
在这里插入图片描述

1.2 转换为高斯分布

接下来,每个点都转换为高斯分布。 这对于光栅化来说已经足够了。 然而,只能从 SfM 数据推断位置和颜色。 为了学习产生高质量结果的表示,我们需要对其进行训练。

1.3 模型训练

训练过程使用随机梯度下降,类似于神经网络,但没有层。 训练步骤为:

  • 使用可微分高斯光栅化将高斯光栅化为图像(稍后详细介绍)
  • 根据光栅化图像和地面真实图像之间的差异计算损失
  • 根据损失调整高斯参数
  • 应用自动致密化和修剪

步骤 1-3 从概念上讲非常简单。 第 4 步涉及以下内容:

  • 如果对于给定的高斯梯度很大(即它太错误),则分割/克隆它
  • 如果高斯很小,则克隆它
  • 如果高斯很大,则将其分割
  • 如果高斯的 alpha 太低,请将其删除

此过程有助于高斯更好地拟合细粒度细节,同时修剪不必要的高斯。

1.4 可微分高斯光栅化

如前所述,3D 高斯分布是一种光栅化方法,它将数据绘制到屏幕上。 然而,一些重要的元素还包括:

  • 快速
  • 可微分

光栅化器的原始实现可以在这里找到。 光栅化涉及:

  • 从相机角度将每个高斯投影为 2D。
  • 按深度对高斯进行排序。
  • 对于每个像素,从前到后迭代每个高斯,将它们混合在一起。

这篇论文中描述了其他优化。

光栅化器是可微分的也很重要,这样就可以用随机梯度下降来训练它。 然而,这仅与训练相关 - 训练有素的高斯也可以用不可微的方法呈现。

2、谁关注3D高斯泼溅?

为什么 3D 高斯溅射受到如此多的关注? 显而易见的答案是结果不言自明 - 这是高质量的实时场景。 然而,故事可能还有更多。

关于高斯泼溅还能做什么还有很多未知数。 它们可以动画化吗? 即将发表的论文《动态 3D 高斯:通过持久动态视图合成进行跟踪》表明他们可以。 还有许多其他未知数。 他们能做反思吗? 可以在没有参考图像训练的情况下对它们进行建模吗?

最后,人们对嵌入式人工智能的研究兴趣日益浓厚。 这是人工智能研究的一个领域,最先进的性能仍然低于人类性能几个数量级,其中大部分挑战在于表示 3D 空间。 鉴于 3D 高斯分布可以产生非常密集的 3D 空间表示,这对具身AI 研究有何影响?

这些问题需要注意方法。 实际影响如何还有待观察。

3、图形学的未来

那么这对图形学的未来意味着什么呢? 好吧,让我们将其分为优点/缺点:

优点

  • 高品质、逼真的场景
  • 快速、实时光栅化
  • 训练速度相对较快

缺点

  • 高 VRAM 使用率(4GB 用于查看,12GB 用于训练)
  • 大量磁盘占用(一个场景 1GB+)
  • 与现有渲染管道不兼容
  • 静态(暂时)

到目前为止,原始的 CUDA 实现尚未适应生产渲染管道,如 Vulkan、DirectX、WebGPU 等,因此还有待观察会产生什么影响。

目前已经进行了以下适应性工作:

  • 远程查看器
  • WebGPU查看器
  • WebGL 查看器
  • Unity查看器
  • 优化的 WebGL 查看器

这些依赖于远程流传输 (1) 或传统的基于四元组的光栅化方法 (2-5)。 虽然基于四元组的方法与数十年的图形技术兼容,但它可能会导致质量/性能降低。 然而,查看器 #5 表明,尽管采用基于四元组的方法,优化技巧仍可以带来高质量/性能。

那么我们会看到 3D 高斯泼溅在生产环境中完全重新实现吗? 答案可能是肯定的。 主要瓶颈是对数百万个高斯进行排序,这在原始实现中使用 CUB 设备基数排序(一种仅在 CUDA 中可用的高度优化的排序)有效完成。 然而,只要付出足够的努力,在其他渲染管道中当然可以达到这种性能水平。


原文链接:3D高斯泼溅 — BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/117286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

直流无刷电机(BLDC)六步换相驱动

直流无刷电机(BLDC)六步换相驱动 文章目录 直流无刷电机(BLDC)六步换相驱动1. 前言2. 六步换相原理3. 电角度与机械角度4. 动手实践4.1 霍尔输出表测量4.2 换向控制4.3 代码编写 5. 总结 1. 前言 直流无刷电机相对直流有刷电机具…

Redis之Java操作Redis的使用

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《Redis实战开发》。🎯🎯 …

Android java Handler sendMessage使用Parcelable传递实例化对象,我这里传递Bitmap 图片数据

一、Bundle给我们提供了一个putParcelable(key,value)的方法。专门用于传递实例化对象。 二、我这里传递Bitmap 图片数据,实际使用可以成功传统图像数据。 发送:Bundle bundle new Bundle();bundle.putParcelable("bitmap",bitmap);msg.setD…

【GitLab CI/CD、SpringBoot、Docker】GitLab CI/CD 部署SpringBoot应用,部署方式Docker

介绍 本文件主要介绍如何将SpringBoot应用使用Docker方式部署,并用Gitlab CI/CD进行构建和部署。 环境准备 已安装Gitlab仓库已安装Gitlab Runner,并已注册到Gitlab和已实现基础的CI/CD使用创建Docker Hub仓库,教程中使用的是阿里云的Docker…

【漏洞复现】Apache_Tomcat7+ 弱口令 后台getshell漏洞

感谢互联网提供分享知识与智慧,在法治的社会里,请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞扫描3、漏洞验证 说明内容漏洞编号漏洞名称Tomcat7 弱口令 && 后台getshell漏洞漏洞评级高…

【Java】Beanshell下通过java操作Excel(xlsx格式)文件读写

一、概述 在项目开发中往往需要使用到Excel的导入和导出,导入就是从Excel中导入到DB中,而导出就是从DB中查询数据然后使用POI写到Excel上。 操作Excel目前比较流行的就是Apache POI和阿里巴巴的easyExcel ! Excel文件处理的主流技术包括: Apache POI 、 JXL 、 Alibaba Ea…

机器学习---SVM目标函数求解,SMO算法

1. 线性可分支持向量机 1.1 定义输入数据 假设给定⼀个特征空间上的训练集为: 其中,(x , y )称为样本点。 x 为第i个实例(样本)。 y 为x 的标记: 当y 1时,x 为正例;当y −1时,x…

16. 机器学习 - 决策树

Hi,你好。我是茶桁。 在上一节课讲SVM之后,再给大家将一个新的分类模型「决策树」。我们直接开始正题。 决策树 我们从一个例子开始,来看下面这张图: 假设我们的x1 ~ x4是特征,y是最终的决定,打比方说是…

合肥中科深谷嵌入式项目实战——人工智能与机械臂(六)

订阅:新手可以订阅我的其他专栏。免费阶段订阅量1000 python项目实战 Python编程基础教程系列(零基础小白搬砖逆袭) 说明:本专栏持续更新中,订阅本专栏前必读关于专栏〖Python网络爬虫实战〗转为付费专栏的订阅说明作者&#xff1…

Python最强自动化神器Playwright!再也不用为爬虫逆向担忧了!

版权说明:本文禁止抄袭、转载,侵权必究! 目录 一、简介+使用场景二、环境部署(准备)三、代码生成器(优势)四、元素定位器(核心)五、追踪查看器(辅助)六、权限控制与认证(高级)七、其他重要功能(进阶)八、作者Info一、简介+使用场景 Playwright是什么?来自Chat…

0001Java安卓程序设计-基于Android多餐厅点餐桌号后厨前台服务设计与开发

文章目录 **摘** **要****目** **录**系统设计开发环境 编程技术交流、源码分享、模板分享、网课教程 🐧裙:776871563 摘 要 移动互联网时代的到来,给人们的生活带来了许多便捷和乐趣。随着用户的不断增多,其规模越来越大&#…

linux环境下编译,安卓平台使用的luajit库

一、下载luajit源码 1、linux下直接下载: a、使用curl下载:https://luajit.org/download/LuaJIT-2.1.0-beta3.tar.gz b、git下载地址;https://github.com/LuaJIT/LuaJIT.git 2、Windows下载好zip文件,下载地址:https…

【四、http】go的http的文件下载

一、日常下载图片到本地 //下载文件func downloadfile(url, filename string) {r, err : http.Get(url)if err ! nil {fmt.Println("err", err.Error())}defer r.Body.Close()f, err : os.Create(filename)if err ! nil {fmt.Println("err", err.Error())…

一文详解:传统企业如何把进销存管理流程搬到线上?

进销存管理是企业管理的核心流程之一,它有助于提高效率、降低成本、增加盈利,同时确保客户满意度,这对于企业的长期成功和竞争力至关重要。但在信息化转型的浪潮下,很多企业的传统进销存流程却遇到不少问题。 如果你也在考虑把进…

Navicat连接mysql 8.0.35 2059错误解决办法

这2天在家重装电脑,顺便把mysql升级8.0,安装完成后,用Navicat连接,报错2059,如下 网上查了一下, 【报错原因】mysql8.0 之前的版本中加密规则是 mysql_native_password,而 mysql8.0 之后的版本…

随机微分方程的分数扩散模型 (score-based diffusion model) 代码示例

随机微分方程的分数扩散模型(Score-Based Generative Modeling through Stochastic Differential Equations) 基于分数的扩散模型,是估计数据分布梯度的方法,可以在不需要对抗训练的基础上,生成与GAN一样高质量的图片。…

【Kotlin精简】第7章 泛型

1 泛型 泛型即 “参数化类型”,将类型参数化,可以用在类,接口,函数上。与 Java 一样,Kotlin 也提供泛型,为类型安全提供保证,消除类型强转的烦恼。 1.1 泛型优点 类型安全:通用允许…

CoDeSys系列-4、基于Ubuntu的codesys运行时扩展包搭建Profinet主从环境

CoDeSys系列-4、基于Ubuntu的codesys运行时扩展包搭建Profinet主从环境 文章目录 CoDeSys系列-4、基于Ubuntu的codesys运行时扩展包搭建Profinet主从环境一、前言二、资料收集三、Ubuntu18.04从安装到更换实时内核1、下载安装Ubuntu18.042、下载安装实时内核,解决编…

如何将PDF文件转换成翻页电子书?这个网站告诉你

​随着电子书的普及,越来越多的人开始将PDF文件转换成翻页电子书。翻页电子书不仅方便阅读,而且还可以在手机上轻松翻页。那么如何将PDF文件转换成翻页电子书呢?今天就为大家介绍一个网站,可以帮助你轻松完成这个任务。 1.首先&am…

Proteus仿真--12864LCD显示计算器键盘按键实验(仿真文件+程序)

本文主要介绍基于51单片机的12864LCD液晶显示电话拨号键盘按键实验(完整仿真源文件及代码见文末链接) 仿真图如下 本设计主要介绍计算器键盘仿真,按键按下后在12864液晶上显示对应按键键值 仿真运行视频 Proteus仿真--12864LCD显示计算器…