【RabbitMQ】 RabbitMQ 消息的延迟 —— 深入探索 RabbitMQ 的死信交换机,消息的 TTL 以及延迟队列

文章目录

  • 一、死信交换机
    • 1.1 什么是死信和死信交换机
    • 1.2 死信交换机和死信队列的创建方式
  • 二、消息的 TTL
    • 2.1 什么是消息的 TTL
    • 2.2 基于死信交换机和 TTL 实现消息的延迟
  • 三、基于 DelayExchang 插件实现延迟队列
    • 3.1 安装 DelayExchang 插件
    • 3.2 DelayExchang 实现消息延迟的原理
    • 3.3 使用 DelayExchang 实现消息的延迟


消息队列是现代分布式应用中的关键组件,用于实现异步通信、解耦系统组件以及处理高并发请求。消息队列可以用于各种应用场景,包括任务调度、事件通知、日志处理等。在消息队列的应用中,有时需要实现消息的延迟处理、处理未能成功消费的消息等功能。

本文将介绍一些与消息队列相关的关键概念和技术,包括死信交换机(Dead Letter Exchange)、消息的 TTL(Time To Live,生存时间)、以及使用 DelayExchange 插件实现消息的延迟处理。通过深入理解这些概念和技术,将能帮助我们更好地设计和构建具有高可用性和可靠性的消息队列系统。

首先,我将介绍死信交换机以及它的作用,然后讨论如何创建死信交换机和死信队列。随后,将深入研究消息的TTL,了解它的作用和如何配置。最后,将探讨如何使用 DelayExchange 插件来实现消息的延迟处理,以满足各种应用需求。

一、死信交换机

1.1 什么是死信和死信交换机

在了解什么是死信交换机之前,让我们首先来了解一下什么是死信。 在消息队列系统中,死信(Dead Letter)是指未能被成功消费的消息。这些消息通常由于多种原因而变为死信,一些主要的原因如下:

  • 消费失败: 当消息被消费者(consumer)拒绝(reject)或未能被确认(acknowledge),并且针对与处理失败的消息没有设置重新入队(requeue)参数时,它们可能成为死信。这可能是因为消息格式错误、业务处理失败、或者其他原因导致消费者无法处理消息。

  • 消息超时: 消息在队列中等待消费,但在一定时间内未被消费者处理。这个时间限制通常由消息的 TTL(Time To Live,生存时间)来定义。当消息超过其 TTL 后,它就变为死信。

  • 队列堆积满: 当消息队列积累了大量消息,无法容纳更多消息时,最早的消息可能成为死信,因为它们无法被及时处理。

因此为了处理这些死信消息,消息队列系统引入了 死信交换机(Dead Letter Exchange)。死信交换机是一个特殊的交换机,它接收死信消息,并根据规则将这些消息路由到死信队列。通过使用死信交换机,系统可以将死信消息从正常队列中分离出来,以便进一步处理或分析。

死信交换机通常与队列绑定,当队列中的消息变为死信时,它们会被发送到与之相关联的死信交换机,然后再路由到死信队列。这种机制使得系统能够更好地处理消息的异常情况,确保消息不会被永久丢失。

给队列绑定死信交换机的方法:

  • 给队列设置dead-letter-exchange属性,指定一个交换机;
  • 给队列设置dead-letter-routing-key属性,设置死信交换机与死信队列的 RoutingKey

如下图所示:

在上图中,simple.queue 就与死信交换机 dl.direct 绑定,最后路由到死信队列dl.queue,后续就可以编写其他逻辑来处理死信队列中的消息。

死信和死信交换机是构建可靠消息处理系统的重要组成部分,它们能够帮助我们跟踪和处理未能成功消费的消息,确保数据不会遗失,同时提供更好的可用性和可维护性。

1.2 死信交换机和死信队列的创建方式

  1. 使用 @Bean 的方式创建:
// 声明普通的 simple.queue 队列,并且为其指定死信交换机:dl.direct
@Bean
public Queue simpleQueue(){
    return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化
        .deadLetterExchange("dl.direct") // 指定死信交换机
        .build();
}

// 声明死信交换机 dl.direct
@Bean
public DirectExchange dlExchange(){
    return new DirectExchange("dl.direct", true, false);
}

// 声明存储死信的队列 dl.queue
@Bean
public Queue dlQueue(){
    return new Queue("dl.queue", true);
}

// 将死信队列 与 死信交换机绑定
@Bean
public Binding dlBinding(){
    return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");
}
  1. 使用 @RabbitListener 注解的方式创建:
@RabbitListener(bindings = @QueueBinding(
        value = @Queue(name = "dl.queue", durable = "true"),
        exchange = @Exchange(name = "dl.direct"),
        key = "dl"
))
public void listenDLQueue(String msg) {
    log.info("消费者接收到 dl.queue 的延迟消息:" + msg);
}

在这种情况下,注意需要在创建 simple.queue 是时候,绑定死信交换机。

二、消息的 TTL

2.1 什么是消息的 TTL

消息的TTL,全称为"Time To Live",是消息队列系统中的一个重要概念。它定义了消息在队列中存活的时间,也就是消息在被发送到队列后,允许存留在队列中的时间长度。一旦消息的TTL超过设定的时间,消息将被认为已过期,消息队列系统将会将其标记为死信(Dead Letter)并将其路由到相关的死信队列。

在消息队列中,消息的超时分为两种情况:

  1. 消息所在的队列设置了储存消息的超时时间;

  2. 消息本身设置了超时时间;

但是不管哪种情况,一定消息超时了,都会成为死信,如下图所示:

对上图的简单解释:

  • 上图中,设置了ttl.queue 的超时时间为 10000 毫秒,意味着一个消息在该队列中储存的时间不会超过这么长的时间;
  • 另外,也可以在发送消息的时候给这个消息设置在队列中的超时时间,例如 5000 毫秒。
  • 无论是哪种情况,一旦消息超时了,都会发送到死信交换机,然后再路由死信队列,最后由处理死信的逻辑处理这些消息。

2.2 基于死信交换机和 TTL 实现消息的延迟

根据上面的死信交换机和 TTL 的特点,我们可以实现延迟处理消息的功能,TTL 和 死信的交换机及其队列的结构图示如下:


下面就使用 Spring AMQP 来声明和实现这些交换机和队列:

  1. 首先通过 @RabbitListener 注解声明一组死信交换机和死信队列,并指定处理死信的逻辑:

    @RabbitListener(bindings = @QueueBinding(
            value = @Queue(name = "dl.queue", durable = "true"),
            exchange = @Exchange(name = "dl.direct"),
            key = "dl"
    ))
    public void listenDLQueue(String msg) {
        log.info("消费者接收到 dl.queue 的延迟消息:" + msg);
    }
    
  2. 然后通过 @Bean 的方式声明一组 TTL 的交换机和队列

    /**
     * 声明 TTL 交换机
     */
    @Bean
    public DirectExchange ttlDirectExchange() {
        return new DirectExchange("ttl.direct", true, false);
    }
    
    /**
     * 声明 TTL 队列
     * 1. 指定消息的 TTL
     * 2. 指定死信交换机
     * 3. 指定死信交换机的 RoutingKey
     */
    @Bean
    public Queue ttlQueue() {
        return QueueBuilder
                .durable("ttl.queue") // 指定队列的名称
                .ttl(10_000) // 指定 TTL 为 10 秒
                .deadLetterExchange("dl.direct") // 指定死信交换机
                .deadLetterRoutingKey("dl") // 指定死信交换机的 RoutingKey
                .build();
    }
    
    /**
     * 绑定 TTL 交换机和队列
     */
    @Bean
    public Binding ttlBinding() {
        return BindingBuilder.bind(ttlQueue()).to(ttlDirectExchange()).with("ttl");
    }
    
  3. 最后,在publisher 中编写发送消息的逻辑

    @Test
    public void testTTLMessage() {
        // 1. 创建消息
        Message message = MessageBuilder.withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8))
                .setDeliveryMode(MessageDeliveryMode.PERSISTENT)
                .build();
        // 2. 创建消息ID
        CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
        // 3. 发送消息
        rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
        log.info("发送延迟消息成功!消息ID: {}", correlationData.getId());
    }
    
    1. 验证延迟消息

在创建ttl.queue的时候,指定了消息在队列中的 TTL 不超过 10 秒,因此预测当发送消息 10s 后,才会被消费者接收:

首先启动 consumer,并清除控制台日志,然后再发送消息:


通过对比控制台日志的时间,可以发现成功将消息延迟了 10 秒。

另外,也可以在发送消息时设置超时时间,可以通过 MessageBuilder 中的 setExpiration 设置消息的超时时间,这里设置为 5 秒:
再次发送消息,并对比观察控制台日志的输出时间:

可以发现,此时消息延迟了 5 秒,通过上面的对比演示可以得出结论:那就是在同时指定了消息的过期时间以及队列的超时时间,将会以短的那个时间为准。

三、基于 DelayExchang 插件实现延迟队列

3.1 安装 DelayExchang 插件

  1. 下载插件

RabbitMQ 有一个官方的插件社区,地址为:https://www.rabbitmq.com/community-plugins.html。其中包含各种各样的插件,包括我们要使用的 DelayExchange 插件:

这里我选择的是 3.8.9 的版本:

  1. 上传插件

这里我的 RabbitMQ 是基于 Docker 安装的,因此需要先查看 RabbitMQ 的插件目录对应的数据卷:


然后,直接进入数据卷挂载点目录:
可以发现这个目录下其实以及有很多的插件的了,然后上传刚才下载的插件到这个目录:

  1. 安装插件

最后就是安装了,安装时需要进入 MQ 容器内部来执行安装。我的容器名为mq,所以执行下面命令:

docker exec -it mq bash

然后执行安装的命令:

rabbitmq-plugins enable rabbitmq_delayed_message_exchange

最后出现下面的日志,就说明安装 DelayExchang 插件成功了:

3.2 DelayExchang 实现消息延迟的原理

DelayExchange 是一个用于实现消息延迟发送的插件,可以在消息队列系统中非常有用。其工作原理如下:

  1. 创建 DelayExchange:首先,需要创建一个 DelayExchange,这是一个特殊的交换机,用于处理延迟消息。通常,可以使用消息队列系统的管理工具或API(如 Spring AMQP 的API)来声明和配置 DelayExchange。

  2. 发送消息到 DelayExchange:当需要发送一个延迟消息时,将消息发送到 DelayExchange,而不是直接发送到目标队列。在发送消息时,需要为消息设置一个属性,通常称为 x-delay,它表示消息的延迟时间。这个属性的值通常以毫秒为单位,定义了消息应该延迟多长时间才会被投递。

  3. DelayExchange 检查 x-delay 属性:当消息到达DelayExchange时,它会检查消息的 x-delay 属性。如果该属性存在,说明这是一个延迟消息。DelayExchange会将消息持久化到硬盘,并记录 x-delay 的值作为延迟时间。

  4. 返回 Routing Not Found:DelayExchange 会向消息的发送者返回 “Routing Not Found” 的响应,意味着消息当前没有目标队列可以接收。这是因为消息不会立即被投递,而是需要等待一定的延迟时间。因此如果设置了生产者消息确认的 publisher-returnReturnCallback,就需要进行额外的处理以避免错误的提示。

  5. 延迟时间到期:经过预定的延迟时间后,DelayExchange 会重新检查已存储的消息,查看是否有消息已经到达或超过了其设定的延迟时间。

  6. 重新投递消息:一旦消息的延迟时间到期,DelayExchange将重新投递消息到指定的目标队列,允许消费者最终接收和处理消息。

通过 DelayExchange 的这一机制,可以实现消息的延迟发送,非常适合需要进行任务调度、处理延迟任务或者在时间敏感任务的应用中使用。它有助于减轻系统负载,提高消息传递的可靠性,以及更好地满足特定的应用需求。

3.3 使用 DelayExchang 实现消息的延迟

  1. 首先,使用 @RabbitListener 注解声明一组延迟交换机和队列,以及延迟消息的处理逻辑。

    @RabbitListener(bindings = @QueueBinding(
            value = @Queue(name = "delay.queue", durable = "true"),
            exchange = @Exchange(name = "delay.direct", delayed = "true"),
            key = "delay"
    ))
    public void listenDelayExchange(String msg) {
        log.info("消费者接收到了 delay.queue 的消息:" + msg);
    }
    

这里使用 @RabbitListener 注解声明交换机和队列和前面的操作基本一致,唯一的区别在于声明交换机的时候,额外设置了一个 delayed 参数,表明声明的是一个延迟交换机。

  1. publisher 中发送延迟消息

    @Test
    public void testDelayMessage() {
        // 1. 创建消息
        Message message = MessageBuilder.withBody("hello, delay message".getBytes(StandardCharsets.UTF_8))
                .setDeliveryMode(MessageDeliveryMode.PERSISTENT)
                .setHeader("x-delay", 5000) // 添加 x-delay 头信息
                .build();
        // 2. 创建消息ID
        CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
        // 3. 发送消息
        rabbitTemplate.convertAndSend("delay.direct", "delay", message, correlationData);
        log.info("通过延迟交换机发送延迟消息成功!消息ID: {}", correlationData.getId());
    }
    

同样,此处发送消息的逻辑也和前面基本一致,只是在 MessageBuilder 中使用 setHeader 额外设置了一个x-delay 的头信息,表明了该消息是延迟消息,同时也指定了消息的超时时间。

  1. 验证延迟消息

同样的,首先启动 consumer,清除控制台日志,然后向延迟交换机发送消息:


通过日志可以看到,成功发送了延迟消息,但是却出现了错误的日志信息,告诉我们是delay.direct交换机没有成功将消息路由到 delay.queue中,但是通过 consumer 的控制台在延迟 5 秒后发现成功接收并处理了这个消息:

出现上面错误日志的原则在上文的 DelayExchang 实现消息延迟的原理中的第 4 点已经提到了,使用 DelayExchang 实现消息的延迟,是会在达到了设置延迟时间,再将消息发送给队列的。但是,由于交换机在收到消息的时候,没有立即路由给队列,在返回确认消息给生产者的就是“Routing Not Found”,因此就会使得生产者误以为路由失败了。

另外,在上面的错误日志中,可以发现有一个 receivedDelay 参数的值是 5000,也就是延迟的时间,我们可以根据这个参数,在 RetuenCallback 中排除发送延迟消息时产生的的错误提示:

然后,再次发送延迟消息到延迟交换机,就不会出现上面的错误提示了:

至此,我们便成功使用 DelayExchang 实现了发送延迟消息的功能。可以发现,使用 DelayExchang 插件实现延迟消息比前面使用死信交换机和 TTL 来实现延迟消息更加的简单。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/117177.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【触想智能】工业显示器上市前的检测项目分享

工业显示器在上市前,需要做一项重要的工作,那就是工业显示器出厂前的产品可靠性检测。 工业显示器选择的测试项目相比商用端更为严格,常见的性能测试项目包括高温老化、防尘防水、电磁静电干扰、防摔防撞等,在工业级应用领域&…

吴恩达《机器学习》4-6->4-7:正规方程

一、正规方程基本思想 正规方程是一种通过数学推导来求解线性回归参数的方法,它通过最小化代价函数来找到最优参数。 代价函数 J(θ) 用于度量模型预测值与实际值之间的误差,通常采用均方误差。 二、步骤 准备数据集,包括特征矩阵 X 和目标…

unity中移动方案--物理渲染分层

一、三种基本移动方案 unity中的移动分为Transform和Rigidbody以及CharacterController,其中CharacterController功能完善,已经可以避免了穿墙,并实现了贴墙走等情况,需要结合性能考虑选择不同的方式。 1.使用transform,直接修改…

Winform 实现俄罗斯方块游戏(一)

第一步,先用GDI绘制小正方形方块,其它形状的用这个方块合成 如何绘制一个方块?先绘制两个正方形,如下: 然后四周用梯形填充,内部颜色用渐变,这样更有立体感,下篇介绍如何实现。

[iOS开发]iOS中TabBar中间按钮凸起的实现

在日常使用app的过程中,经常能看到人家实现了底部分栏控制器的中间按钮凸起的效果,那么这是怎么实现的呢? 效果演示: 实现原理: 创建按钮 创建一个UITabBar的子类,重写它的layoutSubviews方法&#xff1…

安全与HTTP协议:为何明文传输数据成为争议焦点?

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 ⭐ 专栏简介 📘 文章引言 一、H…

线性代数 第五章 特征值与特征向量

一、特征值定义 二、特征值求法 定义法;;相似。 三、特征向量求法 定义法;基础解系法;;相似。 四、特征值性质 不同特征值的特征向量线性无关k重特征值至多有k个线性无关的特征向量 五、相似的定义 若&#xff…

0003Java安卓程序设计-springboot基于Android的学习生活交流APP

文章目录 **摘** **要**目 录系统设计开发环境 编程技术交流、源码分享、模板分享、网课教程 🐧裙:776871563 摘 要 网络的广泛应用给生活带来了十分的便利。所以把学习生活交流管理与现在网络相结合,利用java技术建设学习生活交流APP&…

【深蓝学院】手写VIO第8章--相机与IMU时间戳同步--作业

0. 题目 1. T1 逆深度参数化时的特征匀速模型的重投影误差 参考常鑫助教的答案:思路是将i时刻的观测投到world系,再用j时刻pose和外参投到j时刻camera坐标系下,归一化得到预测的二维坐标(这里忽略了camera的内参,逆深…

Rust语言和curl库编写程序

这是一个使用Rust语言和curl库编写的爬虫程序&#xff0c;用于爬取视频。 use std::env; use std::net::TcpStream; use std::io::{BufReader, BufWriter}; ​ fn main() {// 获取命令行参数let args: Vec<String> env::args().collect();let proxy_host args[1].clon…

Scala语言用Selenium库写一个爬虫模版

首先&#xff0c;我将使用Scala编写一个使用Selenium库下载yuanfudao内容的下载器程序。 然后我们需要在项目的build.sbt文件中添加selenium的依赖项。以下是添加Selenium依赖项的代码&#xff1a; libraryDependencies "org.openqa.selenium" % "selenium-ja…

Python:PDF转长图像和分页图像

简介&#xff1a;随着电子化文档的普及&#xff0c;PDF文件的使用频率越来越高。有时我们需要将PDF中的内容转化为图片格式进行分享或编辑&#xff0c;那么如何才能轻松地完成此任务呢&#xff1f;本文将为你展示一个Python工具&#xff1a;如何将PDF文件转化为图片&#xff0c…

Android ConstraintLayout分组堆叠圆角ShapeableImageView

Android ConstraintLayout分组堆叠圆角ShapeableImageView <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"…

零代码复现-TCGA联合GEO免疫基因结合代谢基因生信套路(三)

前面的分析中&#xff0c;整理好的关键基因集表达谱矩阵&#xff0c;接下来就准备分子亚型的相关分析。 六、一致性聚类构建分子亚型 在6.TCGA和GEO差异基因获取和预后数据的整理\TCGA文件中获取文件 准备一个生存数据和表达谱矩阵&#xff0c;这里需要注意的是&#xff0c;…

【10套模拟】【1】

关键字&#xff1a; 快排空间复杂度、算法目标、广义表与树、后缀表达式、AOV网、完全图、子表

关于iOS:如何使用SwiftUI调整图片大小?

How to resize Image with SwiftUI? 我在Assets.xcassets中拥有很大的形象。 如何使用SwiftUI调整图像大小以缩小图像&#xff1f; 我试图设置框架&#xff0c;但不起作用&#xff1a; 1 2 Image(room.thumbnailImage) .frame(width: 32.0, height: 32.0) 在Image上应用…

五种IO模型

目录 一、对IO的重新认识 二、IO的五种模型 1.阻塞IO 2.非阻塞IO 3.信号驱动IO 4.IO多路转接 5.异步IO 6.一些概念的解释 三、非阻塞IO的代码实现 1.fcntl 2.实现工具类 3.实现主程序 一、对IO的重新认识 如果有人问你IO是什么&#xff0c;你该怎么回答呢&#xf…

openGauss学习笔记-115 openGauss 数据库管理-设置安全策略-设置密码安全策略

文章目录 openGauss学习笔记-115 openGauss 数据库管理-设置安全策略-设置密码安全策略115.1 操作步骤 openGauss学习笔记-115 openGauss 数据库管理-设置安全策略-设置密码安全策略 115.1 操作步骤 用户密码存储在系统表pg_authid中&#xff0c;为防止用户密码泄露&#xff…

HJ72 百钱买百鸡问题

题目&#xff1a; HJ72 百钱买百鸡问题 题解&#xff1a; 暴力枚举。 鸡翁一值钱五&#xff0c;鸡翁最多买20只鸡母一值钱三&#xff0c;鸡母最多买100/3只鸡雏三值钱一&#xff0c;鸡雏最多买100只 private void buyChicken() {int totalCount 100;int totalMoney 100;f…

centos关闭Java进程的脚本

centos关闭Java进程的脚本&#xff0c;有时候服务就是个jar包&#xff0c;关闭程序又要找到进程ID&#xff0c;在kill掉&#xff0c;麻烦&#xff0c;这里就写了个脚本 小白教程&#xff0c;一看就会&#xff0c;一做就成。 1.脚本如下 #!/bin/bash ps -ef | grep java | gre…