【Linux】基础IO之文件操作(文件fd)——针对被打开的文件

系列文章目录


文章目录

  • 系列文章目录
  • 前言
    • 浅谈文件的共识
  • 一、 回忆c语言对文件操作的接口
    • 1.fopen接口和cwd路径
    • 2.fwrite接口和"w","a"方法
    • 3.fprintf接口和三个默认打开的输入输出流(文件)
  • 二、过渡到系统,认识文件调用
    • 2.1看一看文件的系统调用接口——open
    • 2.2 write系统接口
  • 访问文件的本质
  • 总结


前言

浅谈文件的共识

  • 1.文件 = 内容 + 属性

  • 2.文件分为打开的文件和未打开的文件

    • 1)打开的文件:进程打开的。本质上是研究进程和文件的关系。
    • 文件被打开,就必须先加载到内存中。
    • 一个进程可以打开多个文件,操作系统要对这些文件进行管理,就要先描述,再组织。在内核中,操作系统要管理好这些文件,就必须有这个文件的对象,包含很多的文件属性。
  • 2)未打开的文件有很多,操作系统要将这些文件存储好,本质上就是对这些文件进行增删查改的操作!

    • 未打开的文件,在磁盘上放着。

本文章目标:针对被打开的文件,进行各种深入剖析。

一、 回忆c语言对文件操作的接口

1.fopen接口和cwd路径

先执行一下代码:

  1 #include<stdio.h>
  2 #include<unistd.h>
  3 
  4 int main()
  5 {
  6     FILE* fp = fopen("log.txt","w");
  7     if(fp == NULL)
  8     {
  9         perror("fopen");
 10         return 1;
 11     }
 12     printf("pid: %d\n",getpid());
 13     fclose(fp);
 14     sleep(1000);                                                
 15     return 0;
 16 }

该程序运行起来后,以"w"的方式打开log.txt文件,如果该文件不存在,则会创建一个文件。

运行起来时可以看到该进程的pid已经被打印出来。
ll查看能看到的确存在一个log.txt的文件。
在这里插入图片描述
那为什么是在当前目录下创建log.txt文件呢???
这是因为一个叫做cwd的东西的存在。

在根目录下的proc目录下,有该进程的当前路径。
即通过ls /proc/进程pid -l 可以看到,该运行中的进程的cwd路径!

在这里插入图片描述并且该cwd路径就是可执行程序所在的路径!

cwd:current work directory——当前工作目录!

所以,fopen以写的方式打开文件,如果文件不存在,就会在该进程的cwd路径下创建一个log.txt的文件!

由此可以得出,如果我们自己把该进程的cwd路径改了,那么它就会在更改后的cwd路径下创建log.txt文件!

怎么改?

用一个接口:chdir()即可更改当前的cwd路径。

chdir("/home/dzt/learning");   

在上面代码的基础上,在main函数开头就增加这一句代码后。

运行起来通过查找cwd路径发现,cwd被修改了!
在这里插入图片描述

且在/home/dzt/learning路径下发现:
在这里插入图片描述
真就被创建了一个log.txt文件

且在进程对应的工作目录中,不再有log.txt文件。
在这里插入图片描述

注意:1.chdir也受权限的约束,作为普通用户,不能将路径修改到/home/dzt路径下!
2.如果fopen打开的文件带绝对路径,那就按绝对路径来,如果是相对路径,就按该进程的cwd来!

总结:这个小节讲了复习了fopen函数,并且引入了cwd当前工作目录这个概念!

2.fwrite接口和"w","a"方法

在这里插入图片描述
fwrite的使用方法是:将ptr这个字符串,以size大小,nmemb个长度写入stream文件指针指向的文件中。

在这里插入图片描述
w方法的特点是:如果该文件不存在,会创建一个文件。如果该文件存在,会先将该文件清空,再打开!

注意这里的一个细节:

6     const char* message = "Hello Linux\n";                         
17    fwrite(message,strlen(message),1,fp);

执行该函数fwrite时,是否需要strlen(message)+1

答案是不需要的,+1是为了将字符串后面的’\0’也写入文件中,可是:

字符串以’\0’结尾是c语言的规定,关文件操作什么事?!

所以并不需要+1。

而a方法的作用是,直接在文件的末尾追加字符串。

由此可知,Linux中的 “>” 和 ">>"两个符号的区别一定是一个以"w"方式打开,一个以"a’方式打开的区别!!


3.fprintf接口和三个默认打开的输入输出流(文件)

fprintf接口比我们常见的printf函数多了一个字符f,默认情况下,printf就是向显示器打印数据。

而Linux下一切皆文件,所以显示器也是一个文件。

而fprintf接口,就是向指定的文件中输入数据。

fprintf(stdout,"%s %d\n",message,123);      

在这里插入图片描述

而我们在运行该程序时,会发现显示器中出现了这些信息,这就是被打印到了显示器文件中,而不是打印到其他文件中。

在这里插入图片描述
而这三个标准输入输出流,就是对应的:

键盘文件——stdin
显示器文件——stdout
显示器文件——stderr

一旦c程序运行起来,就会默认打开这三个文件。

二、过渡到系统,认识文件调用

文件其实是在磁盘上的,磁盘是外部设备,访问磁盘文件的本质,其实是访问硬件!

2.1看一看文件的系统调用接口——open

使用man 2 手册进行查找open接口的功能
man 2 open

该函数的功能是:打开/创建一个文件或设备。

在这里插入图片描述

这里多嘴一句:c语言中的fopen函数,实现也是将这个open函数进行封装得来的。

pathname是文件路径,如果传的是相对路径,就是按进程所在的cwd路径为主。
flags是一个标志位:
在这里插入图片描述
这里的标志位有三个:
O_RDONLY:表示只读操作
O_WRONLY:表示只写操作
O_RDWR:表示可读可写

为了更好地进行后面的传参,下面来讲一个比特位传参的方式

看下面的代码:

  1 #include<stdio.h>
  2 
  3 #define ONE (1<<0)
  4 #define TWO (1<<1)
  5 #define THREE (1<<2)
  6 #define FOUR (1<<3)
  7 
  8 void show(int flags)
  9 {
 10     if(flags&ONE)   printf("hello function 1\n");
 11     if(flags&TWO)   printf("hello function 2\n");
 12     if(flags&THREE)   printf("hello function 3\n");
 13     if(flags&FOUR)   printf("hello function 4\n");
 14 
 15 }
 16 
 17 int main()
 18 {
 19     show(ONE);
 20     printf("\n");
 21     show(TWO);
 22     printf("\n");
 23     show(ONE|THREE);
 24     printf("\n");
 25     show(ONE|TWO|THREE|FOUR);                                                                                                               
 26     printf("\n");
 27 
 28     return 0;
 29 }

上图所示的代码定义了几个宏,分别表示(1<<n位)
传参时如果穿过来的flag是ONE,则会打印function1,
如果传的是ONE|TWO|THREE,则传过去的flag的二进制为:111
此时就能够匹配三个if语句,就会打印出三个function。

通过这个例子就可以理解了,open函数中的flags作为一个标志位,未来会传很多比特位为1的宏,如果传多个,就能达到不一样的效果!

下面看这个例子:

1 #include<stdio.h>
  2 #include<unistd.h>
  3 #include<string.h>
  4 #include<sys/types.h>
  5 #include<sys/stat.h>
  6 #include<fcntl.h>
  7 
  8 int main()
  9 {
 10     // pathname, flags, modes
 11     int fd = open("log.txt",O_WRONLY); //采用八进制,默认权限位666
 12 
 13     if(fd < 0)
 14     {                                                                                                                                       
 15         printf("open file error\n");
 16         return 1;
 17     }
 18 
 19     return 0;
 20 }

接下来的操作上打开一个文件,因为传的是相对路径,如果按照c语言的fopen函数,如果该文件不存在,那它就会在该进程的cwd路径下创建log.txt文件。

运行后会发现:居然打开失败了!?

在这里插入图片描述

因为系统的open函数的O_WRONLY是只读的,并没有创建文件的功能!
要想解决这个问题:只需要

int fd = open("log.txt",O_WRONLY|O_CREAT);

增加一个比特位传参即可!
在这里插入图片描述
此时就创建出了一个log.txt文件!

注意:为什么log.txt的权限那么奇怪呢?还是一些随机的权限???

因为open函数中,第三个函数 mode是权限,我们没有传,就默认是随机的!

int fd = open("log.txt",O_WRONLY|O_CREAT, 0666); //采用八进制,默认权限位666      

再传参之后,重新试试,结果如下:

在这里插入图片描述
此时就相对正确了,可是,666权限对应的权限位应该是-rw-rw-rw-
明显不同,这是因为权限掩码的存在,默认的umask是2,根据权限掩码和权限的计算规则:

最终权限 = 起始权限 &~umask)

最终权限就是664–>-rw-rw-r--

如果非要将权限设置成666,就更改权限掩码:

umask(0); 

在全局中有一个umask(2),在该进程中也有一个umask(0),所以该文件创建之后其实是听进程中的umask(0)的,因为**就近原则,局部优先,**进程的umask会影响整个进程,但不会影响全局的。
在这里插入图片描述

此时log.txt的权限就非常正确了


总结:这个小节讲了open函数的三个参数:

pathname , flags , mode

2.2 write系统接口

在这里插入图片描述
write接口是向文件描述符对应的文件中写入。

文件描述符:file descrpitor(fd),也就是open函数的返回值,这个文件描述符就是一个文件的标识。

 8 int main()
    9 {
   10     umask(0);
   11     // pathname, flags, modes
   12     int fd = open("log.txt",O_WRONLY|O_CREAT, 0666); //采用八进制,默认权限位666
   13 
   14     if(fd < 0)
   15     {
   16         printf("open file error\n");
   17         return 1;
   18     }                                                                                                                                     
   19 
   20     const char* mesg = "Hello Linux";
   21     ssize_t id = write(fd,mesg,strlen(mesg));
   22 
   23     return 0;
   24 }

此时,向fd文件描述符对应的文件中写入Hello Linux;
结果显而易见,就不展示了,但是当我们将字符串修改成"aaa"时,结果如下:

20     const char* mesg = "Hello Linux";

在这里插入图片描述

这个结果跟fwrite函数结果完全不同,fwrite函数是每次打开文件都会清空内容再写入。

所以,只需要小小地操作:

12     int fd = open("log.txt",O_WRONLY|O_CREAT|O_TRUNC, 0666); //采用八进制,默认权限位666

在这里插入图片描述

O_TRUNC就是truncate的简写。

通过O_WRONLY|O_CREAT|O_TRUNC选项,就实现了如果文件不存在就创建,如果文件存在就打开并先清空的逻辑!

所以,O_APPEND,就是追加的逻辑!

访问文件的本质

由此可知,c语言,c++,java等任何其他语言,对文件的操作接口的底层一定是对这些open函数,write函数的封装!!!

在这里插入图片描述

可是还有一个问题:open系统调用的返回值是int fd,而fopen函数的返回值是FILE* fp

这两者有什么关系?

每次创建一个进程时,都会在内存中创建一个描述该进程的task_struct对象,包含进程中的各种信息,其中就有一个叫做struct file_struct* files的指针,该指针指向一个struct files struct数组,且该数组中的所有成员类型都是struct file*的指针。

为什么要这样设计呢?

来看右边:

每次打开一个文件时,都会创建一个描述该文件的struct file文件对象,该对象存储文件的各种信息。而该文件对象的地址就恰好被进程中的一个指针数组存储着!!!

在这里插入图片描述

所以,为什么open函数的返回值为int fd这个文件描述符,其实就是进程中维护的指针数组存储该文件对象的下标!!

如果该文件对象的被存储在指针数组的2号下标处,打开文件成功后就返回2!(fd)

当我们尝试着打印该文件的fd时,发现结果是3!

在这里插入图片描述

这恰好证明了, 该文件的文件描述符一定是放在进程管理的文件对象指针数组的3号下标处!!!

可是,为什么是3呢?

因为前面说过,一个进程创建后,会默认打开三个输入输出流(文件)
这三个输入输出流分别是:

stdin stdout stderr

分别对应的下标是:

0 1 2

 10 int main()
 11 {
 12     char buffer[1024];
 13     ssize_t sz = read(0,buffer,sizeof(buffer));
 14     //sz返回读取到的个数
 15     if(sz < 0)
 16     {
 17         perror("read fail");
 18         return 1;
 19     }
 20     buffer[sz] = '\0'; // read是按字节读取,如果想把它识别成字符串,就得主动加'\0'                                                          
 21     printf("%s\n",buffer);

 22 }

如上就是从0号文件中读取数据,放入到buffer数组中。

在这里插入图片描述

运行起来后会发现,结果就是等待输入,等待键盘文件的输入。

read系统接口的注意事项:返回值是返回成功读取到的字符的个数。如果想将读取到的若干字符识别成字符串,需要主动添加’\0’。


下面再看一组测试代码:

  8 int main(){
  9     close(1);
 10 
 12     const char* msg = "Hello Linux\n";
 13     write(1,msg,strlen(msg));
 14     write(2,msg,strlen(msg));                                                                                                               
 15                                       
 16 }     

首先close 1号文件后,运行结果只打印了一行msg代码。

前面说过,1号文件是stdout,对应的是显示器文件,2号文件是stderr,对应的也是显示器文件。它们本质上没有区别,那为什么关闭了1号文件,也就是关闭了显示器文件后,通过2号文件仍然能向显示器中打印呢?

1号文件和2号文件虽然都是显示器文件,但是他们对应的struct file*指针不同,也就是说,有两个指针指向显示器文件。
关闭1号文件的本质是,让1号文件对应的指针置空,同时让显示器文件对应的引用计数减减。这个就是close函数的本质操作。

综上:

C语言中将fd(文件描述符)封装成了FILE的结构体,不止是c语言,在任何其他语言中,只要是文件操作的结构体,就一定封装了fd(文件描述符)


总结

这篇文章讲述了关于文件的基础理解。
针对的是被打开的文件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/117033.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式中利用VS Code 远程开发原理

VS Code几乎是所有的程序员必备的工具之一&#xff0c;据说全球一般的开发者都使用过VS Code这款工具。 今天分享一篇 VS Code 实现远程办公相关的文章。 1、概 述 通常&#xff0c;我们都是每天到工作的办公室进行办公&#xff0c;但是&#xff0c;如果下班回家&#x…

chrome 扩展 popup 弹窗的使用

popup的基本使用方法 popup介绍 popup 是点击 browser_action 或者 page_action图标时打开的一个小窗口网页&#xff0c;焦点离开网页就立即关闭&#xff0c;一般用来做一些临时性的交互。 popup配置 V3版本中&#xff08;V2版本是在 browser_action 中 &#xff09;&#x…

用户自定义消息及层次划分

有些人对术语 WM_USER 表示消息范围基的名称有不同的意见&#xff0c;因为 WM_USER 是由窗口类的实现者来定义的。他们抱怨的是&#xff0c;用户不能使用它们&#xff0c;因为它们属于窗口类定义的一部分。 但是&#xff0c;问题是&#xff0c;”这里的用户是谁&#xff1f;”…

【IDEA】在工具栏设置快速创建包和类的图表

页面效果&#xff1a; 操作步骤&#xff1a; 设置 --> 外观与行为 --> 菜单与工具栏 --> 点击 主工具栏 --> 点击 ---- --> 点击 号 --> 添加操作 主菜单 --> 文件 --> 文件打开操作 --> 打开项目操作 --> 新建 --> 往下找 找到 clas…

模型应用系实习生-模型训练笔记(更新至线性回归、Ridge回归、Lasso回归、Elastic Net回归、决策树回归、梯度提升树回归和随机森林回归)

sklearn机械学习模型步骤以及模型 一、训练准备&#xff08;x_train, x_test, y_train, y_test&#xff09;1.1 导包1.2 数据要求1.21 导入数据1.22 数据类型查看检测以及转换1.22 划分数据 二、回归2.1 线性回归2.2 随机森林回归2.3 GradientBoostingRegressor梯度提升树回归2…

HarmonyOS列表组件

List组件的使用 import router from ohos.routerEntry Component struct Index {private arr: number[] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]build() {Row() {Column() {List({ space: 10 }) {ForEach(this.arr, (item: number) > {ListItem() {Text(${item}).width(100%).heig…

大语言模型对齐技术 最新论文及源码合集(外部对齐、内部对齐、可解释性)

大语言模型对齐(Large Language Model Alignment)是利用大规模预训练语言模型来理解它们内部的语义表示和计算过程的研究领域。主要目的是避免大语言模型可见的或可预见的风险&#xff0c;比如固有存在的幻觉问题、生成不符合人类期望的文本、容易被用来执行恶意行为等。 从必…

账户权限控制

1.首先配置一个单群组4节点的链 1.1创建操作目录 cd ~ && mkdir -p fisco && cd fisco 1.2下载国内脚本 curl -#LO https://osp-1257653870.cos.ap-guangzhou.myqcloud.com/FISCO-BCOS/FISCO-BCOS/releases/v2.9.1/build_chain.sh && chmod ux bu…

MobaXterm使用VNC远程显示和控制ubuntu桌面

目录 1 在ubuntu中安装vnc 2 设置ubuntu远程连接 3 MobaXterm中连接ubuntu的vnc 1 在ubuntu中安装vnc 参考&#xff1a;Ubuntu18.04~Ubuntu22.04安装并配置VNC_ubuntu安装vnc-CSDN博客 大体流程就是在ubuntu中安装vnc&#xff0c;设置密码&#xff0c;然后配置服务&#x…

万物皆可“云” 从杭州云栖大会看数智生活的未来

文章目录 前言一、云栖渐进&#xff1a;一个科技论坛的变迁与互联网历史互联网创新创业飞天进化飞天智能驱动数字中国 二、2023云栖大会&#xff1a;云计算人工智能 玩出科技跨界新花样大会亮点重磅嘉宾热门展览算力馆人工智能馆产业创新馆 总结 前言 10月31日&#xff0c;202…

网络编程 - HTTP协议

目录 HTTP协议格式 一&#xff0c;请求格式 1.1 URL的基本格式 1.2 方法(method) 1.3 请求头header 二&#xff0c;响应格式 2.1 状态码 HTTP协议格式 HTTP协议与之前讲的TCP/IP协议不同&#xff0c;HTTP协议要分为两个部分——请求和响应&#xff0c;也就是一种"一…

路由器基础(九):防火墙基础

防火墙 (Fire Wall) 是网络关联的重要设备&#xff0c;用于控制网络之间的通信。外部网络用户的访问必须先经过安全策略过滤&#xff0c;而内部网络用户对外部网络的访问则无须过滤。现在的防火墙还具有隔离网络、提供代理服务、流量控制等功能。 一、三种防火墙技术 常见的…

云智慧联合北航提出智能运维(AIOps)大语言模型及评测基准

随着各行业数字化转型需求的不断提高&#xff0c;人工智能、云计算、大数据等新技术的应用已不仅仅是一个趋势。各行业企业和组织纷纷投入大量资源&#xff0c;以满足日益挑剔的市场需求&#xff0c;追求可持续性和竞争力&#xff0c;这也让运维行业迎来了前所未有的挑战和机遇…

Git Rebase 优化项目历史

在软件开发过程中&#xff0c;版本控制是必不可少的一环。Git作为当前最流行的版本控制系统&#xff0c;为开发者提供了强大的工具来管理和维护代码历史。git rebase是其中一个高级特性&#xff0c;它可以用来重新整理提交历史&#xff0c;使之更加清晰和线性。本文将详细介绍g…

FFmpeg——使用Canvas录制视频尚存问题的解决方案

个人简介 &#x1f440;个人主页&#xff1a; 前端杂货铺 &#x1f64b;‍♂️学习方向&#xff1a; 主攻前端方向&#xff0c;正逐渐往全干发展 &#x1f4c3;个人状态&#xff1a; 研发工程师&#xff0c;现效力于中国工业软件事业 &#x1f680;人生格言&#xff1a; 积跬步…

creating server tcp listening socket 127.0.0.1:6379: bind No error

window下启动redis服务报错&#xff1a; creating server tcp listening socket 127.0.0.1:6379: bind No error 解决方案如下按顺序输入如下命令即可连接成功 redis-cli.exeshutdownexit运行&#xff1a;redis-server.exe redis.windows.conf shutdown出现以下错误&#xff…

Type-C接口详解

USB接口发展史 USB接口历经Type-A→Type-B→Type-C五次大的更新换代&#xff1b;目前Type-A Standard作为标准USB接口形式&#xff0c;仍然在大范围应用&#xff0c;而Micro-A以及Type-B系列已经慢慢谈出人们的视野&#xff0c;逐渐被新型的Type-C代替。 Type-C接口 24PIN Typ…

路由器基础(十一):ACL 配置

访问控制列表 (Access Control List,ACL) 是目前使用最多的访问控制实现技术。访问控制列表是路由器接口的指令列表&#xff0c;用来控制端口进出的数据包。ACL适用于所有的被路由协议&#xff0c;如IP、IPX、AppleTalk 等。访问控制列表可以分为基本访问控制列表和高级访问控制…

Redis之哨兵模式

文章目录 前言一、主从复制1.概述2.作用3.模拟实践搭建场景模拟实践 二、哨兵模式1.概述2.配置使用3.优缺点4.sentinel.conf完整配置 总结 前言 从主从复制到哨兵模式。 一、主从复制 1.概述 主从复制&#xff0c;是指将一台 Redis 服务器的数据&#xff0c;复制到其他的 Red…