NLP之Bert介绍和简单示例

文章目录

  • 1. Bert 介绍
  • 2. 代码示例
    • 2.1 代码流程

1. Bert 介绍

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 代码示例

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')
print(input_ids)

输出内容:

tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)

2.1 代码流程

代码片段涉及到了使用transformers库来加载一个预训练的BERT模型的分词器,并用它来对一段文本进行编码。以下是整体流程和目的的分步说明:

  1. 导入AutoTokenizer类:
    from transformers import AutoTokenizer这行代码导入了transformers库中的AutoTokenizer类。这个类可以自动检测并加载与给定模型相对应的分词器(tokenizer)。

  2. 加载分词器:
    tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")这行代码创建了一个分词器的实例。from_pretrained方法用于加载预先训练好的分词器,这里是"bert-base-chinese",专门为中文文本设计的BERT模型的分词器。

  3. 文本编码:
    input_ids = tokenizer.encode('欢迎来到Bert世界', return_tensors='tf')这行代码用分词器将提供的中文字符串'欢迎来到Bert世界'转换成BERT模型能够理解的输入格式,即一系列的数字ID。每个ID对应原始文本中的一个词或子词单位。return_tensors='tf'指定返回的格式为TensorFlow张量。

  4. 打印输出:
    print(input_ids)这行代码输出编码后的input_ids。这个输出是用于后续的模型预测或者微调过程的输入。

    tf.Tensor([[ 101 3614 6816 3341 1168  100  686 4518  102]], shape=(1, 9), dtype=int32)
    

目的:
这段代码的主要目的是为了准备数据,将自然语言文本转换为BERT模型可以接受的格式,这是使用BERT模型进行任务(如分类、问答等)前的标准步骤。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/116191.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux下input子系统

文章目录 input子系统简单介绍相关的函数input_dev注册过程上报输入事件按键的input子系统实验 input子系统简单介绍 input子系统是管理输入的子系统,和pinctrl和gpio子系统一样,都是Linux内核针对某一类设备而创建的框架。比如按键输入、键盘、鼠标、触…

【强化学习】16 ——PPO(Proximal Policy Optimization)

文章目录 前言TRPO的不足PPO特点 PPO-惩罚PPO-截断优势函数估计算法伪代码PPO 代码实践参考 前言 TRPO 算法在很多场景上的应用都很成功,但是我们也发现它的计算过程非常复杂,每一步更新的运算量非常大。于是,TRPO 算法的改进版——PPO 算法…

PHP 人才招聘管理系统mysql数据库web结构layUI布局apache计算机软件工程网页wamp

一、源码特点 PHP 人才招聘管理系统是一套完善的web设计系统 layUI技术布局 ,对理解php编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。 php人才招聘管理系统 代码 https://download.csdn.net/download/qq_4…

软件开发全文档归档,开发、管理、实施、运维、服务巡检、信息安全、安全运维

在当今高度信息化的时代,软件开发已成为推动社会进步和发展的重要力量。软件开发过程中,文件支撑作为关键的一环,对于保障项目的顺利进行和产品的质量具有不可替代的作用。本文将探讨软件开发所需的主要文件及其作用。 一、引言 软件开发是…

VR博物馆:让博物馆传播转化为品牌影响力

随着VR技术的不断进步,VR全景技术已经成为了文化展示和传播的一项重要工具,相较于传统视频、图文等展现方式,VR全景体验更加直观、便捷,其中蕴涵的信息量也更加丰富,这也为公众了解博物馆和历史文化带来了更为深刻的体…

802.11AX基础---走进HE WLAN

1、WiFi 6 是什么? WiFi 6是IEEE802.11ax的简称,也就是第六代WiFi的标准;它在继承前几代WiFi技术的前提下,不仅对速率进行优化,更着重于对 效率 的提升。 2、WiFi 6 为什么快? WiFi 6 理论速率计算公式&a…

【Midjourney入门教程3】写好prompt常用的参数

文章目录 1、图片描述词(图片链接)文字描述词后缀参数2、权重划分3、后缀参数版本选择:--v版本风格:--style长宽比:--ar多样性: --c二次元化:--niji排除内容:--no--stylize--seed--tile、--q 4、…

使用Python 脚自动化操作服务器配置

“ 有几十台特殊的服务器,没有合适的批量工具只能手动,要一个一个进行点击设置很耗费时间呀\~”,使用 Python 的简单脚本,即可模拟鼠标键盘进行批量作业 01 — 自动化示例 以某服务器中的添加用户权限为例,演示过程皆未触碰鼠标…

2022年09月 Python(三级)真题解析#中国电子学会#全国青少年软件编程等级考试

Python等级考试(1~6级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 十六进制数100,对应的十进制数为 ?( ) A: 128 B: 256 C: 28 D: 56 答…

如何设置OBS虚拟摄像头给钉钉视频会议使用

环境: OBS Studio 29.1.3 Win10 专业版 钉钉7.1.0 问题描述: 如何设置OBS虚拟摄像头给钉钉视频会议使用 解决方案: 1.打开OBS 底下来源这添加视频采集设备 选择OBS虚拟摄像头 2.源那再建一个图像,随便选一张图片 3.点击虚…

【DriveGPT学习笔记】自动驾驶汽车Autonomous Vehicle Planning

原文地址:DriveGPT - Lei Maos Log Book 自动驾驶汽车的核心软件组件是感知、规划和控制。规划是指在给定场景或一系列场景的情况下为自动驾驶汽车制定行动计划的过程,以实现安全和理想的自动驾驶。 用于规划的场景是从感知软件组件获得的。计划的行动将…

Windows Server 2016使用MBR2GPT.EXE教程!

什么是MBR2GPT.exe? MBR2GPT.exe是微软提供的专业工具,可在命令提示符下运行。使用该工具可以将引导磁盘从MBR转换为GPT分区样式,而无需修改或删除所选磁盘上的任何内容。 在Windows Server 2019和Windows 10(1703…

pytorch+LSTM实现使用单参数预测,以及多参数预测(代码注释版)

开发前准备: 环境管理:Anaconda python: 3.8 显卡:NVIDIA3060 pytorch: 到官网选择conda版本,使用的是CUDA11.8 编译器: PyCharm 简述: 本次使用seaborn库中的flights数据集来做试验,我们通过…

c语言经典算法—二分查找,冒泡,选择,插入,归并,快排,堆排

一、二分查找 1、前提条件&#xff1a;数据有序&#xff0c;随机访问&#xff1b; 2、实现&#xff1a;递归实现&#xff0c;非递归实现 3、注意事项&#xff1a; 循环退出条件:low <high,low high.说明还有一个元素&#xff0c;该元素还要与key进行比较 mid的取值&#xf…

Excel文档名称批量翻译的高效方法

在处理大量文件时&#xff0c;我们常常需要借助一些工具来提高工作效率。例如&#xff0c;在需要对Excel文档名称进行批量翻译时&#xff0c;一个方便快捷的工具可以帮助我们省去很多麻烦。今天&#xff0c;我将介绍一款名为固乔文件管家的软件&#xff0c;它能够帮助我们轻松实…

hackergame2023菜菜WP

文章目录 总结Hackergame2023更深更暗组委会模拟器猫咪小测标题HTTP集邮册Docker for everyone惜字如金 2.0Git? Git!高频率星球低带宽星球小型大语言模型星球旅行日记3.0JSON ⊂ YAML? 总结 最近看到科大在举办CTF比赛&#xff0c;刚好我学校也有可以参加&#xff0c;就玩了…

Pytorch网络模型训练

现有网络模型的使用与修改 vgg16_false torchvision.models.vgg16(pretrainedFalse) # 加载一个未预训练的模型 vgg16_true torchvision.models.vgg16(pretrainedTrue) # 把数据分为了1000个类别print(vgg16_true) 以下是vgg16预训练模型的输出 VGG((features): S…

论文浅尝 | ChatKBQA:基于微调大语言模型的知识图谱问答框架

第一作者&#xff1a;罗浩然&#xff0c;北京邮电大学博士研究生&#xff0c;研究方向为知识图谱与大语言模型协同推理 OpenKG地址&#xff1a;http://openkg.cn/tool/bupt-chatkbqa GitHub地址&#xff1a;https://github.com/LHRLAB/ChatKBQA 论文链接&#xff1a;https://ar…

小程序如何设置用户同意服务协议并上传头像和昵称

为了保护用户权益和提供更好的用户体验&#xff0c;设置一些必填项和必读协议是非常必要的。首先&#xff0c;用户必须阅读服务协议。服务协议是明确规定用户和商家之间权益和义务的文件。通过要求用户在下单前必须同意协议&#xff0c;可以确保用户在使用服务之前了解并同意相…

Android studio新版本多渠道打包配置

最近公司套壳app比较多 功能也都一样只有地址&#xff0c;和app名字还有icon不一样 签名文件也是一样的,所以就研究了多渠道打包 配置如下&#xff1a; 在app下build.gradle配置 因为最新版as中禁用了BuildConfig 所以我们需要手动配置一下 android { //TODO 其他省略buildFe…