阿里云安全恶意程序检测

阿里云安全恶意程序检测

  • 赛题理解
    • 赛题介绍
      • 赛题说明
      • 数据说明
      • 评测指标
    • 赛题分析
      • 数据特征
      • 解题思路
  • 数据探索
    • 数据特征类型
    • 数据分布
      • 箱型图
    • 变量取值分布
      • 缺失值
      • 异常值
      • 分析训练集的tid特征
      • 标签分布
      • 测试集数据探索同上
    • 数据集联合分析
      • file_id分析
      • API分析
  • 特征工程与基线模型
    • 构造特征与特征选择
      • 基于数据类型的方法
      • 基于多分析视角的方法
      • 特征选择
    • 构造线下验证集
      • 评估穿越
      • 训练集和测试集的特征性差异
      • 训练集和测试集是分布差异性
    • 基线模型
      • 特征工程
      • 基线构建
      • 特征重要性分析
      • 模型测试

赛题理解

赛题介绍

赛题说明

本题目提供的数据来自经过沙箱程序模拟运行后的API指令序列,全为Windows二进制可执行程序,经过脱敏处理:样本数据均来自互联网,其中恶意文件的类型有感染型病毒、木马程序、挖矿程序、DDoS 木马、勒索病毒等,数据总计6亿条。

注:什么是沙箱程序?
在计算机安全中,沙箱(Sandbox)是一种用于隔离正在运行程序的安全机制,通常用于执行未经测试或者不受信任的程序或代码,它会为待执行的程序创建一个独立的执行环境,内部程序的执行不会影响到外部程序的运行。

数据说明

在这里插入图片描述

评测指标

在这里插入图片描述
需特别注意,log 对于小于1的数是非常敏感的。比如log0.1和log0.000 001的单个样本的误差为10左右,而log0.99和log0.95的单个误差为0.1左右。

logloss和AUC的区别:AUC只在乎把正样本排到前面的能力,logloss更加注重评估的准确性。如果给预测值乘以一个倍数,则AUC不会变,但是logloss 会变。

赛题分析

数据特征

在这里插入图片描述
本赛题的特征主要是API接口的名称,这是融合时序与文本的数据,同时接口名称基本表达了接口用途。因此,最基本、最简单的特征思路是对所有API数据构造CountVectorizer特征

说明: CountVectorizer 是属于常见的特征数值计算类,是一个文本特征提取方法。对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。

解题思路

本赛题根据官方提供的每个文件对API的调用顺序及线程的相关信息按文件进行分类,将文件属于每个类的概率作为最终的结果进行提交,并采用官方的logloss作为最终评分,属于典型的多分类问题

数据探索

数据特征类型

train.info()
train.head(5)
train.describe()

数据分布

箱型图

#使用箱型图查看单个变量的分布情况。
#取前10000条数据绘制tid变量的箱型图
#os:当数据量太大时,变量可视化取一部分
sns.boxplot(x = train.iloc[:10000]["tid"])

在这里插入图片描述

变量取值分布

#用函数查看训练集中变量取值的分布
train.nunique()

缺失值

#查看缺失值
train.isnull().sum()

异常值

#异常值:分析训练集的index特征
train['index'].describe()

分析训练集的tid特征

#分析训练集的tid特征
train['tid'].describe()

标签分布

#统计标签取值的分布情况
train['label'].value_counts()

直观化:

train['label'].value_counts().sort_index().plot(kind = 'bar')

在这里插入图片描述

train['label'].value_counts().sort_index().plot(kind = 'pie')

在这里插入图片描述

测试集数据探索同上

数据集联合分析

file_id分析

#对比分析file_id变量在训练集和测试集中分布的重合情况:
train_fileids = train['file_id'].unique()
test_fileids = test['file_id'].unique()
len(set(train_fileids) - set(test_fileids))

API分析

#对比分析API变量在训练集和测试集中分布的重合情况
train_apis = train['api'].unique()
test_apis = test['api'].unique()
set(set(test_apis) - set(train_apis))

特征工程与基线模型

构造特征与特征选择

基于数据类型的方法

在这里插入图片描述

基于多分析视角的方法

这是最常见的一种特征构造方法,在所有的基于table 型(结构化数据)的比赛中都会用到。

我们以用户是否会在未来三天购买同一物品为例,来说明此类数据的构建角度:用户长期购物特征,用户长期购物频率;用户短期购物特征,用户近期购物频率;物品受欢迎程度,该物品最近受欢迎程度;

用户对此类产品的喜好特征:用户之前购买该类/该商品的频率等信息;

时间特征:是否到用户发工资的时间段:商品是否为用户的必备品,如洗漱用品、每隔多长时间必买等。

特征选择

特征选择主要包含过滤法、包装法和嵌入法三种,前面已经介绍过。

构造线下验证集

在数据竞赛中,为了防止选手过度刷分和作弊,每日的线上提交往往是有次数限制的。因此,线下验证集的构造成为检验特征工程、模型是否有效的关键。在构造线下验证集时,我们需要考虑以下几个方面的问题。

评估穿越

评估穿越最常见的形式是时间穿越和会话穿越两种。

1.时间穿越

例1: 假设我们需要预测用户是否会去观看视频B,在测试集中需要预测用户8月8日上午10:10点击观看视频B的概率,但是在训练集中已经发现该用户8月8日上午10:09在观看视频A,上午10:11 也在观看视频A,那么很明显该用户就有非常大的概率不看视频B,通过未来的信息很容易就得出了该判断。

例2: 假设我们需要预测用户9月10日银行卡的消费金额,但是在训练集中已经出现了该用户银行卡的余额在9月9日和9月11日都为0,那么我们就很容易知道该用户在9月10日的消费金额是0,出现了时间穿越的消息。

2.会话穿越

以电商网站的推荐为例,当用户在浏览某一个商品时,某个推荐模块会为他推荐多个商品进行展现,用户可能会点击其中的一个或几个。为了描述方便,我们将这些一 次展现中产生的,点击和未点击的数据合起来称为一 次会话(不同于计算机网络中会话的概念)。在上面描述的样本划分方法中,一次会话中的样本可能有一部分被划分到训练集,另一部分被划分到测试集。这样的行为,我们称之为会话穿越。

会话穿越的问题在于,由于一个会话对应的是
一个用户在一次展现中的行为,因此存在较高的相关性,穿越会带来类似上面提到的用练习题考试的问题。此外,会话本身是不可分割的,也就是说,在线上使用模型时,不可能让你先看到一次会话的一部分,然后让你预测剩余的部分,因为会话的展现结果是一次性产生的,一旦产生后,模型就已经无法干预展现的结果了。

3.穿越本质

穿越本质上是信息泄露的问题。无论时间穿越,还是会话穿越,其核心问题都是训练数据中的信息以不同方式、不同程度泄露到了测试数据中。.

训练集和测试集的特征性差异

我们用训练集训练模型,当训练集和测试集的特征分布有差异时,就容易造成模型偏差,导致预测不准确。常见的训练集和测试集的特征差异如下:

数值特征:训练集和测试集的特征分布交叉部分极小;
在这里插入图片描述
类别特征:测试集中的特征大量未出现在训练集中。例如,在微软的一场比赛中,测试集中的很多版本未出现在训练集中。

在某些极端情况下,训练集中极强的特征会在测试集中全部缺失。

训练集和测试集是分布差异性

训练集和测试集的分布差异性的判断步骤如下:
将训练集的数据标记为label=1,将测试集的数据标记为label= 0。对训练集和测试集做5折的auc交叉验证。如果auc在0.5附近,那么则说明训练集和测试集的分布差异不大:如果auc在0.9附近,那么则说明训练集和测试集的分布差异很大。

基线模型

导包 -> 读取数据 -> 特征工程

特征工程

·利用count()函数和nunique()函数生成特征:反应样本调用api,tid,index的频率信息


def simple_sts_features(df):
    simple_fea = pd.DataFrame()
    simple_fea['file_id'] = df['file_id'].unique()
    simple_fea = simple_fea.sort_values('file_id')
    
    df_grp = df.groupby('file_id')
    simple_fea['file_id_api_count'] = df_grp['api'].count().values
    simple_fea['file_id_api_nunique'] = df_grp['api'].nunique().values
    
    simple_fea['file_id_tid_count'] = df_grp['tid'].count().values
    simple_fea['file_id_tid_nunique'] = df_grp['tid'].nunique().values
    
    simple_fea['file_id_index_count'] = df_grp['index'].count().values
    simple_fea['file_id_index_nunique'] = df_grp['index'].nunique().values
    
    return simple_fea

·利用main(),min(),std(),max()函数生成特征:tid,index可认为是数值特征,可提取对应的统计特征。


def simple_numerical_sts_features(df):
    simple_numerical_fea = pd.DataFrame()
    simple_numerical_fea['file_id'] = df['file_id'].unique()
    simple_numerical_fea = simple_numerical_fea.sort_values('file_id')
    
    df_grp = df.groupby('file_id')
    
    simple_numerical_fea['file_id_tid_mean'] = df_grp['tid'].mean().values
    simple_numerical_fea['file_id_tid_min'] = df_grp['tid'].min().values
    simple_numerical_fea['file_id_tid_std'] = df_grp['tid'].std().values
    simple_numerical_fea['file_id_tid_max'] = df_grp['tid'].max().values
    
    simple_numerical_fea['file_id_index_mean'] = df_grp['index'].mean().values
    simple_numerical_fea['file_id_index_min'] = df_grp['index'].min().values
    simple_numerical_fea['file_id_index_std'] = df_grp['index'].std().values
    simple_numerical_fea['file_id_index_max'] = df_grp['index'].max().values
    
    return simple_numerical_fea

·利用定义的特征生成函数,并生成训练集和测试集的统计特征。

%%time
#统计api,tid,index的频率信息的特征统计
simple_train_fea1 = simple_sts_features(train)
%%time
simple_test_fea1 = simple_sts_features(test)
%%time
#统计tid,index等数值特征的特征统计
simple_train_fea2 = simple_numerical_sts_features(train)
%%time
simple_test_fea2 = simple_numerical_sts_features(test)

基线构建

获取标签:

#获取标签
train_label = train[['file_id','label']].drop_duplicates(subset=['file_id','label'],keep='first')
test_submit = test[['file_id']].drop_duplicates(subset=['file_id'],keep='first')

训练集和测试集的构建:

#训练集和测试集的构建
train_data = train_label.merge(simple_train_fea1,on = 'file_id',how = 'left')
train_data = train_data.merge(simple_train_fea2,on = 'file_id',how = 'left')

test_submit = test_submit.merge(simple_test_fea1,on = 'file_id',how = 'left')
test_submit = test_submit.merge(simple_test_fea2,on = 'file_id',how = 'left')

因为本赛题给出的指标和传统的指标略有不同,所以需要自己写评估指标,这样方便对比线下与线上的差距,以判断是否过拟合、是否出现线上线下不一致的问题等。
在这里插入图片描述

#关于LGB的自定义评估指标的书写
def lgb_logloss(preds,data):
    labels_ = data.get_label()
    classes_ = np.unique(labels_)
    preds_prob = []
    for i in range(len(classes_)):
        preds_prob.append(preds[i * len(labels_):(i+1)*len(labels_)])
        
    preds_prob_ = np.vstack(preds_prob)
    
    loss = []
    for i in range(preds_prob_.shape[1]):  #样本个数
        sum_ = 0
        for j in range(preds_prob_.shape[0]):  #类别个数
            pred = preds_prob_[j,i]  #第i个样本预测为第j类的概率
            if j == labels_[i]:
                sum_ += np.log(pred)
            else:
                sum_ += np.log(1 - pred)
        loss.append(sum_)
        return 'loss is: ',-1 * (np.sum(loss) / preds_prob_.shape[1]),False

线下验证:

train_features = [col for col in train_data.columns if col not in ['label','file_id']]
train_label = 'label'

使用5折交叉验证,采用LGB模型:

%%time


from sklearn.model_selection import StratifiedKFold,KFold
params = {
    'task':'train',
    'num_leaves':255,
    'objective':'multiclass',
    'num_class':8,
    'min_data_in_leaf':50,
    'learning_rate':0.05,
    'feature_fraction':0.85,
    'bagging_fraction':0.85,
    'bagging_freq':5,
    'max_bin':128,
    'random_state':100
}

folds = KFold(n_splits=5,shuffle=True,random_state = 15)  #n_splits = 5定义5折
oof = np.zeros(len(train))

predict_res = 0
models = []
for fold_, (trn_idx,val_idx) in enumerate(folds.split(train_data)):
    print("fold n°{}".format(fold_))
    trn_data = lgb.Dataset(train_data.iloc[trn_idx][train_features],label = train_data.iloc[trn_idx][train_label].values)
    val_data = lgb.Dataset(train_data.iloc[val_idx][train_features],label = train_data.iloc[val_idx][train_label].values)
    
    clf = lgb.train(params,
                   trn_data,
                   num_boost_round = 2000,
                   valid_sets = [trn_data,val_data],
                   verbose_eval = 50,
                   early_stopping_rounds = 100,
                   feval = lgb_logloss)
    models.append(clf)

特征重要性分析

#特征重要性分析
feature_importance = pd.DataFrame()
feature_importance['fea_name'] = train_features
feature_importance['fea_imp'] = clf.feature_importance()
feature_importance = feature_importance.sort_values('fea_imp',ascending = False)
plt.figure(figsize = [20,10,])
sns.barplot(x = feature_importance['fea_name'],y = feature_importance['fea_imp'])

在这里插入图片描述
由运行结果可以看出:

(1) API的调用次数和API的调用类别数是最重要的两个特征,即不同的病毒常常会调用不同的API,而且由于有些病毒需要复制自身的原因,因此调用API的次数会明显比其他不同类别的病毒多。

(2)第三到第五强的都是线程统计特征,这也较为容易理解,因为木马等病毒经常需要通过线程监听一些内容,所以在线程等使用上会表现的略有不同。

模型测试

#模型测试
pred_res = 0
fold = 5
for model in models:
    pred_res += model.predict(test_submit[train_features]) * 1.0 /fold
test_submit['prob0'] = 0
test_submit['prob1'] = 0
...
test_submit[['prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']] = pred_res
test_submit[['file_id','prob0','prob1','prob2','prob3','prob4','prob5','prob6','prob7']].to_csv('baseline.csv',index = None)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/116160.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【前端周报11.03】

前端周汇报11.03 那我们接着上一周的继续往下进行推进上周总结本周工作下周内容 那我们接着上一周的继续往下进行推进 上周总结 上一周的话我其实最主要的工作还是进行了一系列的调研主要的话是针对于我们未来要做的小程序的项目的,为未来开发这个小程序做好一系列…

leetcode:26. 删除有序数组中的重复项(python3解法)

难度:简单 给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数…

多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉 计算机竞赛

文章目录 0 前言2 先上成果3 多目标跟踪的两种方法3.1 方法13.2 方法2 4 Tracking By Detecting的跟踪过程4.1 存在的问题4.2 基于轨迹预测的跟踪方式 5 训练代码6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习多目标跟踪 …

【入门Flink】- 04Flink部署模式和运行模式【偏概念】

部署模式 在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink为各种场景提供了不同的部署模式,主要有以下三种:会话模式(Session Mode)、单作业模式(Per-Job Mode&…

Ubuntu20.04下安装Redis环境

apt安装Redis环境 更新apt-get安装镜像源 安装Redis sudo apt-get install -y redis-server设置密码 # 编辑Redis的配置文件redis.conf,如果不知道配置文件的位置可以执行whereis redis.conf查看 sudo vim /etc/redis/redis.conf取消文件中的requirepass注释&am…

设计模式(22)享元模式

一、介绍: 1、定义:享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式。 2、…

memcpy()之小端模式

函数原型 void memcpy(voiddestin, const void *src, size_t n); 功能 由src指向地址为起始地址的连续n个字节的数据复制到以destin指向地址为起始地址的空间内。 头文件 #include<string.h> 返回值 函数返回一个指向dest的指针。 例1&#xff1a;如果用来复制字…

FPGA高端项目:图像采集+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持

目录 1、前言免责声明本项目特点 2、相关方案推荐我这里已有的 GT 高速接口解决方案我这里已有的以太网方案 3、设计思路框架设计框图视频源选择OV5640摄像头配置及采集动态彩条视频数据组包GTP 全网最细解读GTP 基本结构GTP 发送和接收处理流程GTP 的参考时钟GTP 发送接口GTP …

【计算机网络】运输层

概述运输层服务 运输层协议为运行在不同主机上的应用程序提供了逻辑通信功能。 运输层协议是在端系统中而不是在路由器中实现的。 运输层和网络层的关系&#xff1a; 网络层提供主机之间的逻辑通信&#xff0c;而运输层为**运行在不同主机上的应用程序&#xff08;进程&#…

做读书笔记时的一个高效小技巧

你好&#xff0c;我是 EarlGrey&#xff0c;一名双语学习者&#xff0c;会一点编程&#xff0c;目前已翻译出版《Python 无师自通》、《Python 并行编程手册》等书籍。 在这里&#xff0c;我会持续和大家分享好书、好工具和高效生活、工作技巧&#xff0c;欢迎大家一起提升认知…

【CesiumJS】(1)Hello world

介绍 Cesium 起源于2011年&#xff0c;初衷是航空软件公司(Analytical Graphics, Inc.)的一个团队要制作世界上最准确、性能最高且具有时间动态性的虚拟地球。取名"Cesium"是因为元素铯Cesium让原子钟非常准确&#xff08;1967年&#xff0c;人们依据铯原子的振动而对…

Android Studio打包AAR

注意 依赖的Android Studio版本为4.2.2 更高的Android Studio版本使用方法可能有所不同&#xff0c;gradle的版本和gradle plugins的版本都会影响使用方式。 基于此&#xff0c;本文只能作为参考&#xff0c;而不能作为唯一答案&#xff0c;如果要完全依赖本文&#xff0c;则…

GPT与人类共生:解析AI助手的兴起

随着GPT模型的崭新应用&#xff0c;如百度的​1​和CSDN的​2​&#xff0c;以及AI助手的普及&#xff0c;人们开始讨论AI对就业市场和互联网公司的潜在影响。本文将探讨GPT和AI助手的共生关系&#xff0c;以及我们如何使用它们&#xff0c;以及使用的平台和动机。 GPT和AI助手…

Linux | 如何保持 SSH 会话处于活动状态

在远程服务器管理和安全数据传输中&#xff0c;SSH&#xff08;Secure Shell&#xff09;是不可或缺的工具。然而&#xff0c;它的便利性和安全性有时会因常见的问题而受到损害&#xff1a;冻结 SSH 会话。 此外&#xff0c;session 的突然中断可能会导致工作丢失、项目延迟和无…

LIME低亮度图像增强

LIME低亮度图像增强 main.cpp #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> #include <opencv2/imgproc/imgproc.hpp> #include "lime.h"int main() {cv::Mat img_in cv::imread("…

使用Postman工具做接口测试 —— 环境变量与请求参数格式!

引言 在上一篇笔记我们主要介绍了接口测试的基础知识与基本功能&#xff0c;本章主要介绍如何使用postman做接口测试。 配置环境变量和全局变量 环境变量和全局变量 环境管理中还可以点击“Global”添加全局变量&#xff0c;环境变量只有当选择了该环境时才生效&#xff0c;…

电脑出现emp.dll文件缺失的错误提示怎么办,教你一键解决dll丢失问题

今天&#xff0c;我想和大家分享一下关于emp.dll文件丢失的4个解决方法&#xff0c;希望能对大家有所帮助。 首先&#xff0c;我们要明确emp.dll文件的作用。emp.dll是一个动态链接库文件&#xff0c;这个文件对于许多程序的正常运行至关重要&#xff0c;一旦丢失&#xff0c;…

pytorch笔记 GRUCELL

1 介绍 GRU的一个单元 2 基本使用方法 torch.nn.GRUCell(input_size, hidden_size, biasTrue, deviceNone, dtypeNone) 输入&#xff1a;&#xff08;batch&#xff0c;input_size&#xff09; 输出和隐藏层&#xff1a;&#xff08;batch&#xff0c;hidden_size&#xf…

正点原子嵌入式linux驱动开发——Linux 块设备驱动

经过之前这些笔记的学习&#xff0c;都是字符设备驱动&#xff0c;本章来学习一下块设备驱动框架&#xff0c;块设备驱动是Linux三大驱动类型之一。块设备驱动要远比字符设备驱动复杂得多&#xff0c;不同类型的存储设备又对应不同的驱动子系统&#xff0c;本章重点学习一下块设…

CSP-31补题日记--梯度求解

202309-3-梯度求解 题目链接 http://118.190.20.162/view.page?gpidT173 最近刚刚在上数据结构二叉树 跟这道题真的是强相关 然后在就是涉及到了数学求导 这基本上是我复学两个月做的最久的题了 感觉做完这道题对栈和二叉树理解比以前清晰了很多 不摆了 上代码 ** 题目思路&am…