多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉 计算机竞赛

文章目录

  • 0 前言
  • 2 先上成果
  • 3 多目标跟踪的两种方法
    • 3.1 方法1
    • 3.2 方法2
  • 4 Tracking By Detecting的跟踪过程
    • 4.1 存在的问题
    • 4.2 基于轨迹预测的跟踪方式
  • 5 训练代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习多目标跟踪 实时检测

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 先上成果

在这里插入图片描述

3 多目标跟踪的两种方法

3.1 方法1

基于初始化帧的跟踪,在视频第一帧中选择你的目标,之后交给跟踪算法去实现目标的跟踪。这种方式基本上只能跟踪你第一帧选中的目标,如果后续帧中出现了新的物体目标,算法是跟踪不到的。这种方式的优点是速度相对较快。缺点很明显,不能跟踪新出现的目标。

3.2 方法2

基于目标检测的跟踪,在视频每帧中先检测出来所有感兴趣的目标物体,然后将其与前一帧中检测出来的目标进行关联来实现跟踪的效果。这种方式的优点是可以在整个视频中跟踪随时出现的新目标,当然这种方式要求你前提得有一个好的“目标检测”算法。

学长主要分享Option2的实现原理,也就是Tracking By Detecting的跟踪方式。

4 Tracking By Detecting的跟踪过程

**Step1:**使用目标检测算法将每帧中感兴趣的目标检测出来,得到对应的(位置坐标, 分类, 可信度),假设检测到的目标数量为M;

**Step2:**通过某种方式将Step1中的检测结果与上一帧中的检测目标(假设上一帧检测目标数量为N)一一关联起来。换句话说,就是在M*N个Pair中找出最像似的Pair。

对于Step2中的“某种方式”,其实有多种方式可以实现目标的关联,比如常见的计算两帧中两个目标之间的欧几里得距离(平面两点之间的直线距离),距离最短就认为是同一个目标,然后通过匈牙利算法找出最匹配的Pair。当让,你还可以加上其他的判断条件,比如我用到的IOU,计算两个目标Box(位置大小方框)的交并比,该值越接近1就代表是同一个目标。还有其他的比如判断两个目标的外观是否相似,这就需要用到一种外观模型去做比较了,可能耗时更长。

在关联的过程中,会出现三种情况:

1)在上一帧中的N个目标中找到了本次检测到的目标,说明正常跟踪到了;

2)在上一帧中的N个目标中没有找到本次检测到的目标,说明这个目标是这一帧中新出现的,所以我们需要把它记录下来,用于下下一次的跟踪关联;

3)在上一帧中存在某个目标,这一帧中并没有与之关联的目标,那么说明该目标可能从视野中消失了,我们需要将其移除。(注意这里的可能,因为有可能由于检测误差,在这一帧中该目标并没有被检测到)

在这里插入图片描述

4.1 存在的问题

上面提到的跟踪方法在正常情况下都能够很好的工作,但是如果视频中目标运动得很快,前后两帧中同一个目标运动的距离很远,那么这种跟踪方式就会出现问题。

在这里插入图片描述
如上图,实线框表示目标在第一帧的位置,虚线框表示目标在第二帧的位置。当目标运行速度比较慢的时候,通过之前的跟踪方式可以很准确的关联(A, A’)和(B,
B’)。但是当目标运行速度很快(或者隔帧检测)时,在第二帧中,A就会运动到第一帧中B的位置,而B则运动到其他位置。这个时候使用上面的关联方法就会得到错误的结果。

那么怎样才能更加准确地进行跟踪呢?

4.2 基于轨迹预测的跟踪方式

既然通过第二帧的位置与第一帧的位置进行对比关联会出现误差,那么我们可以想办法在对比之前,先预测目标的下一帧会出现的位置,然后与该预测的位置来进行对比关联。这样的话,只要预测足够精确,那么几乎不会出现前面提到的由于速度太快而存在的误差

在这里插入图片描述

如上图,我们在对比关联之前,先预测出A和B在下一帧中的位置,然后再使用实际的检测位置与预测的位置进行对比关联,可以完美地解决上面提到的问题。理论上,不管目标速度多么快,都能关联上。那么问题来了,怎么预测目标在下一帧的位置?

方法有很多,可以使用卡尔曼滤波来根据目标前面几帧的轨迹来预测它下一帧的位置,还可以使用自己拟合出来的函数来预测下一帧的位置。实际过程中,我是使用拟合函数来预测目标在下一帧中的位置。

在这里插入图片描述
如上图,通过前面6帧的位置,我可以拟合出来一条(T->XY)的曲线(注意不是图中的直线),然后预测目标在T+1帧的位置。具体实现很简单,Python中的numpy库中有类似功能的方法。

5 训练代码

这里记录一下训练代码,来日更新


if FLAGS.mode == ‘eager_tf’:
# Eager mode is great for debugging
# Non eager graph mode is recommended for real training
avg_loss = tf.keras.metrics.Mean(‘loss’, dtype=tf.float32)
avg_val_loss = tf.keras.metrics.Mean(‘val_loss’, dtype=tf.float32)

        for epoch in range(1, FLAGS.epochs + 1):
            for batch, (images, labels) in enumerate(train_dataset):
                with tf.GradientTape() as tape:
                    outputs = model(images, training=True)
                    regularization_loss = tf.reduce_sum(model.losses)
                    pred_loss = []
                    for output, label, loss_fn in zip(outputs, labels, loss):
                        pred_loss.append(loss_fn(label, output))
                    total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                grads = tape.gradient(total_loss, model.trainable_variables)
                optimizer.apply_gradients(
                    zip(grads, model.trainable_variables))

                logging.info("{}_train_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_loss.update_state(total_loss)

            for batch, (images, labels) in enumerate(val_dataset):
                outputs = model(images)
                regularization_loss = tf.reduce_sum(model.losses)
                pred_loss = []
                for output, label, loss_fn in zip(outputs, labels, loss):
                    pred_loss.append(loss_fn(label, output))
                total_loss = tf.reduce_sum(pred_loss) + regularization_loss

                logging.info("{}_val_{}, {}, {}".format(
                    epoch, batch, total_loss.numpy(),
                    list(map(lambda x: np.sum(x.numpy()), pred_loss))))
                avg_val_loss.update_state(total_loss)

            logging.info("{}, train: {}, val: {}".format(
                epoch,
                avg_loss.result().numpy(),
                avg_val_loss.result().numpy()))

            avg_loss.reset_states()
            avg_val_loss.reset_states()
            model.save_weights(
                'checkpoints/yolov3_train_{}.tf'.format(epoch))

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/116155.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【入门Flink】- 04Flink部署模式和运行模式【偏概念】

部署模式 在一些应用场景中,对于集群资源分配和占用的方式,可能会有特定的需求。Flink为各种场景提供了不同的部署模式,主要有以下三种:会话模式(Session Mode)、单作业模式(Per-Job Mode&…

Ubuntu20.04下安装Redis环境

apt安装Redis环境 更新apt-get安装镜像源 安装Redis sudo apt-get install -y redis-server设置密码 # 编辑Redis的配置文件redis.conf,如果不知道配置文件的位置可以执行whereis redis.conf查看 sudo vim /etc/redis/redis.conf取消文件中的requirepass注释&am…

设计模式(22)享元模式

一、介绍: 1、定义:享元模式(Flyweight Pattern)主要用于减少创建对象的数量,以减少内存占用和提高性能。这种类型的设计模式属于结构型模式,它提供了减少对象数量从而改善应用所需的对象结构的方式。 2、…

memcpy()之小端模式

函数原型 void memcpy(voiddestin, const void *src, size_t n); 功能 由src指向地址为起始地址的连续n个字节的数据复制到以destin指向地址为起始地址的空间内。 头文件 #include<string.h> 返回值 函数返回一个指向dest的指针。 例1&#xff1a;如果用来复制字…

FPGA高端项目:图像采集+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持

目录 1、前言免责声明本项目特点 2、相关方案推荐我这里已有的 GT 高速接口解决方案我这里已有的以太网方案 3、设计思路框架设计框图视频源选择OV5640摄像头配置及采集动态彩条视频数据组包GTP 全网最细解读GTP 基本结构GTP 发送和接收处理流程GTP 的参考时钟GTP 发送接口GTP …

【计算机网络】运输层

概述运输层服务 运输层协议为运行在不同主机上的应用程序提供了逻辑通信功能。 运输层协议是在端系统中而不是在路由器中实现的。 运输层和网络层的关系&#xff1a; 网络层提供主机之间的逻辑通信&#xff0c;而运输层为**运行在不同主机上的应用程序&#xff08;进程&#…

做读书笔记时的一个高效小技巧

你好&#xff0c;我是 EarlGrey&#xff0c;一名双语学习者&#xff0c;会一点编程&#xff0c;目前已翻译出版《Python 无师自通》、《Python 并行编程手册》等书籍。 在这里&#xff0c;我会持续和大家分享好书、好工具和高效生活、工作技巧&#xff0c;欢迎大家一起提升认知…

【CesiumJS】(1)Hello world

介绍 Cesium 起源于2011年&#xff0c;初衷是航空软件公司(Analytical Graphics, Inc.)的一个团队要制作世界上最准确、性能最高且具有时间动态性的虚拟地球。取名"Cesium"是因为元素铯Cesium让原子钟非常准确&#xff08;1967年&#xff0c;人们依据铯原子的振动而对…

Android Studio打包AAR

注意 依赖的Android Studio版本为4.2.2 更高的Android Studio版本使用方法可能有所不同&#xff0c;gradle的版本和gradle plugins的版本都会影响使用方式。 基于此&#xff0c;本文只能作为参考&#xff0c;而不能作为唯一答案&#xff0c;如果要完全依赖本文&#xff0c;则…

GPT与人类共生:解析AI助手的兴起

随着GPT模型的崭新应用&#xff0c;如百度的​1​和CSDN的​2​&#xff0c;以及AI助手的普及&#xff0c;人们开始讨论AI对就业市场和互联网公司的潜在影响。本文将探讨GPT和AI助手的共生关系&#xff0c;以及我们如何使用它们&#xff0c;以及使用的平台和动机。 GPT和AI助手…

Linux | 如何保持 SSH 会话处于活动状态

在远程服务器管理和安全数据传输中&#xff0c;SSH&#xff08;Secure Shell&#xff09;是不可或缺的工具。然而&#xff0c;它的便利性和安全性有时会因常见的问题而受到损害&#xff1a;冻结 SSH 会话。 此外&#xff0c;session 的突然中断可能会导致工作丢失、项目延迟和无…

LIME低亮度图像增强

LIME低亮度图像增强 main.cpp #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <iostream> #include <opencv2/imgproc/imgproc.hpp> #include "lime.h"int main() {cv::Mat img_in cv::imread("…

使用Postman工具做接口测试 —— 环境变量与请求参数格式!

引言 在上一篇笔记我们主要介绍了接口测试的基础知识与基本功能&#xff0c;本章主要介绍如何使用postman做接口测试。 配置环境变量和全局变量 环境变量和全局变量 环境管理中还可以点击“Global”添加全局变量&#xff0c;环境变量只有当选择了该环境时才生效&#xff0c;…

电脑出现emp.dll文件缺失的错误提示怎么办,教你一键解决dll丢失问题

今天&#xff0c;我想和大家分享一下关于emp.dll文件丢失的4个解决方法&#xff0c;希望能对大家有所帮助。 首先&#xff0c;我们要明确emp.dll文件的作用。emp.dll是一个动态链接库文件&#xff0c;这个文件对于许多程序的正常运行至关重要&#xff0c;一旦丢失&#xff0c;…

pytorch笔记 GRUCELL

1 介绍 GRU的一个单元 2 基本使用方法 torch.nn.GRUCell(input_size, hidden_size, biasTrue, deviceNone, dtypeNone) 输入&#xff1a;&#xff08;batch&#xff0c;input_size&#xff09; 输出和隐藏层&#xff1a;&#xff08;batch&#xff0c;hidden_size&#xf…

正点原子嵌入式linux驱动开发——Linux 块设备驱动

经过之前这些笔记的学习&#xff0c;都是字符设备驱动&#xff0c;本章来学习一下块设备驱动框架&#xff0c;块设备驱动是Linux三大驱动类型之一。块设备驱动要远比字符设备驱动复杂得多&#xff0c;不同类型的存储设备又对应不同的驱动子系统&#xff0c;本章重点学习一下块设…

CSP-31补题日记--梯度求解

202309-3-梯度求解 题目链接 http://118.190.20.162/view.page?gpidT173 最近刚刚在上数据结构二叉树 跟这道题真的是强相关 然后在就是涉及到了数学求导 这基本上是我复学两个月做的最久的题了 感觉做完这道题对栈和二叉树理解比以前清晰了很多 不摆了 上代码 ** 题目思路&am…

STM32HAL-完全解耦面向对象思维的架构-时间轮片法使用(timeslice)

目录 概述 一、开发环境 二、STM32CubeMx配置 三、编码 四、运行结果 五、代码解释 六、总结 概述 timeslice是一个时间片轮询框架&#xff0c;完全解耦的时间片轮询框架&#xff0c;非常适合裸机单片机引用。接下来将该框架移植到stm32单片机运行&#xff0c;单片机…

Git命令大全

Git命令大全 1、初始化本地仓库 git init <directory><>意思是可选的&#xff0c;如果不指定&#xff0c;将使用当前目录。 2.克隆一个远程仓库 git clone <url>3.添加文件到暂存区 git add <file>要添加当前目录中的所有文件&#xff0c;请使用.…

Http代理与socks5代理有何区别?如何选择?(一)

了解SOCKS和HTTP代理之间的区别对于优化您的在线活动至关重要&#xff0c;无论您是技术娴熟的个人、现代互联网用户还是企业所有者。在使用代理IP时&#xff0c;您需要先了解这两种协议之间的不同。 一、了解HTTP代理 HTTP&#xff08;超文本传输协议&#xff09;代理专门设计…