hugetlb核心组件

1 概述

hugetlb机制是一种使用大页的方法,与THP(transparent huge page)是两种完全不同的机制,它需要:

  • 管理员通过系统接口reserve一定量的大页,
  • 用户通过hugetlbfs申请使用大页,

核心组件如下图:

 围绕着保存大页的核心数据结构hstate,

  • 不同的系统接口,通过__nr_pages_store_common()将申请大页,并存入hstate;
  • 不同的hugetlbfs挂载,通过alloc_huge_page()从hstate中申请大页使用;

下面,我们分别详解这些组件。

2 hstate

如上图中,hstate用于保存huge page,

关于hstate,参考以下代码:

struct hstate hstates[HUGE_MAX_HSTATE];

gigantic_pages_init()
---
	/* With compaction or CMA we can allocate gigantic pages at runtime */
	if (boot_cpu_has(X86_FEATURE_GBPAGES))
		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
---

hugetlb_init()
---
	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
	if (!parsed_default_hugepagesz) {
		...
		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
		...
	}

---

#define HPAGE_SHIFT		PMD_SHIFT
#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)

default_hugepagesz_setup()
---
	...
	default_hstate_idx = hstate_index(size_to_hstate(size));
	...
---
__setup("default_hugepagesz=", default_hugepagesz_setup);

 其中有以下几个关键点:

  • x86_64架构存在两个hstate,2M和1G
  • 系统中存在一个default hstate,默认是2M的,可以通过kernel commandline设置;

我们在/proc/meminfoh中看到的:

HugePages_Total:       0
HugePages_Free:        0
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB
Hugetlb:               0 kB

 HugePages开头的这几个都是default hstate的数据,换句话说,是2M的;1G的hugetlbs数据并不会体现在其中,参考代码:

hugetlb_report_meminfo()
---
	for_each_hstate(h) {
		unsigned long count = h->nr_huge_pages;

		total += huge_page_size(h) * count;

		if (h == &default_hstate)
			seq_printf(m,
				   "HugePages_Total:   %5lu\n"
				   "HugePages_Free:    %5lu\n"
				   "HugePages_Rsvd:    %5lu\n"
				   "HugePages_Surp:    %5lu\n"
				   "Hugepagesize:   %8lu kB\n",
				   count,
				   h->free_huge_pages,
				   h->resv_huge_pages,
				   h->surplus_huge_pages,
				   huge_page_size(h) / SZ_1K);
	}

	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
---

这我们再贴一段hstate处理hugepage的代码:

dequeue_huge_page_nodemask()
  -> dequeue_huge_page_node_exact()
	 ---
		list_move(&page->lru, &h->hugepage_activelist);
		set_page_refcounted(page);
		ClearHPageFreed(page);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
	 ---

 非常简单,链表维护,减少计数。

3 nr_hugepages

hugetlb需要系统管理员将一定量的内存reserve给hugetlb,可以通过以下途径:

  • /proc/sys/vm/nr_hugepages,参考代码hugetlb_sysctl_handler_common(),它会向default_hstate注入大页,也就是2M;
  • /sys/kernel/mm/hugepages/hugepages-size/nr_hugepages,这里可以指定size向2M或者1G的hstate注入大页,node策略为interleaved,
  • /sys/devices/system/node/node_id/hugepages/hugepages-size/nr_hugepages,通过该接口,不仅可以指定size,还可以指定node;

参考代码:

// /sys/kernel/mm/hugepages
hugetlb_sysfs_init()
---
	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	...
	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
		...
	}
---

hugetlb_register_node()
---
	struct node_hstate *nhs = &node_hstates[node->dev.id];
	...
	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->dev.kobj);
	...
	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		...
	}
---

nr_hugepages_store_common()
---
	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
---

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
{
	int i;

	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
			return &hstates[i];
		}

	return kobj_to_node_hstate(kobj, nidp);
}

 另外,hugetlb还有overcommit功能,参考Redhat官方给出的解释:

/proc/sys/vm/nr_overcommit_hugepages

Defines the maximum number of additional huge pages that can be created and used by the system through overcommitting memory. Writing any non-zero value into this file indicates that the system obtains that number of huge pages from the kernel's normal page pool if the persistent huge page pool is exhausted. As these surplus huge pages become unused, they are then freed and returned to the kernel's normal page pool.

不过,在实践中,我们通常不会使用这个功能,hugetlb reserve的内存量都是经过预先计算的预留的;overcommit虽然提供了一定的灵活性,但是增加了不确定性。 

4 hugetlbfs

hugetlb中的所有大页,都需要通过hugetlbfs以文件的形式呈现出来,供用户读写;接下来,我们先看下hugetlbfs的文件的使用方法。

const struct file_operations hugetlbfs_file_operations = {
	.read_iter		= hugetlbfs_read_iter,
	.mmap			= hugetlbfs_file_mmap,
	.fsync			= noop_fsync,
	.get_unmapped_area	= hugetlb_get_unmapped_area,
	.llseek			= default_llseek,
	.fallocate		= hugetlbfs_fallocate,
};

hugetlbfs的文件并没有write_iter方法,如果我们用write系统调用操作该文件,会报错-EINVAL,具体原因可以索引代码中的FMODE_CAN_WRITE的由来;不过,hugetlbfs中的文件可以通过read系统调用读。fallocate回调存在意味着,我们可以预先通过fallocate给文件分配大页。另外,从hugetlb这个名字中我们就可以知道,它主要跟mmap有关,我们看下关键代码实现:

handle_mm_fault()
  -> hugetlb_fault()
    -> hugetlb_no_page()
	  -> alloc_huge_page()

hugetlbfs_fallocate()
  -> alloc_huge_page()

所以,hugetlbfs的大页是从mmap后的pagefault分配或者fallocate提前分配好的;

关于hugetlbfs的大页的分配,还需要知道reserve的概念;

hugetlbfs_file_mmap()
  -> hugetlb_reserve_pages()
	-> hugetlb_acct_memory()
      -> gather_surplus_pages()
	 ---
		needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
		if (needed <= 0) {
			h->resv_huge_pages += delta;
			return 0;
		}
	 ---

alloc_huge_page()
  -> dequeue_huge_page_vma()
	 ---
		if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
			SetHPageRestoreReserve(page);
			h->resv_huge_pages--;
		}
	 ---
//如果是fallocate路径,avoid_reserve就是true

hugetlb_acct_memory()用于执行reserve,但是并不会真的分配;

这里并不是文件系统的delay allocation功能,大页的累计有明确的数量和对齐要求;reserve只是为了符合mmap的语义,即mmap时不会分配内存,page fault才分配;

hugetlbfs的mount参数中有一个min_size,可以直接在mount的时候reserve大页,如下:

hugepage_new_subpool()
---
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
---

 而在实践中,这也没有必要;与overcommit类似,hugetlb最关键的特性就是确定性,它能确保用户可以使用到huge page,所以,资源都是提供计算预留好的,甚至包括,哪个进程能用多少等,所以,做这种mount reserve没有意义。


hugetlbfs除了用户通过mount命令挂载的,系统还给每个hstate一个默认挂载;

init_hugetlbfs_fs()
---
	/* default hstate mount is required */
	mnt = mount_one_hugetlbfs(&default_hstate);
	...
	hugetlbfs_vfsmount[default_hstate_idx] = mnt;

	/* other hstates are optional */
	i = 0;
	for_each_hstate(h) {
		if (i == default_hstate_idx) {
			i++;
			continue;
		}

		mnt = mount_one_hugetlbfs(h);
		if (IS_ERR(mnt))
			hugetlbfs_vfsmount[i] = NULL;
		else
			hugetlbfs_vfsmount[i] = mnt;
		i++;
	}
--

hugetlb_file_setup()
---
	hstate_idx = get_hstate_idx(page_size_log);
	...
	mnt = hugetlbfs_vfsmount[hstate_idx];
	...
	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
	...
---

ksys_mmap_pgoff()
---
	if (!(flags & MAP_ANONYMOUS)) {
		...
	} else if (flags & MAP_HUGETLB) {
		...
		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
		...
		len = ALIGN(len, huge_page_size(hs));
		...
		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
				VM_NORESERVE,
				&ucounts, HUGETLB_ANONHUGE_INODE,
				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
		...
	}

	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
---

memfd_create()
---
...
	if (flags & MFD_HUGETLB) {
		...
		file = hugetlb_file_setup(name, 0, VM_NORESERVE, &ucounts,
					HUGETLB_ANONHUGE_INODE,
					(flags >> MFD_HUGE_SHIFT) &
					MFD_HUGE_MASK);
	}
	...
	fd_install(fd, file);
---

默认hugetlbfs挂载主要用于:

  • memfd,MEMFD_HUGETLB,直接从hugetlb中申请大页,创建匿名mem文件;
  • mmap,MMAP_HUGETLB,直接总hugetlb中申请大页,mmap到程序中;

这种方法虽然增加了灵活性,但是,还是之前强调的hugetlbfs是为了大页的确定性而存在的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/115568.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

K8S知识点(一)

&#xff08;1&#xff09;应用部署方式转变 &#xff08;2&#xff09;K8S介绍 容器部署容易出现编排问题&#xff0c;为了解决就出现了大量的编排软件&#xff0c;这里将的是K8S编排问题的解决佼佼者 弹性伸缩&#xff1a;当流量从1000变为1200可以&#xff0c;自动开启一个…

[尚硅谷React笔记]——第9章 ReactRouter6

目录&#xff1a; 课程说明一级路由重定向NavLink高亮useRoutes路由表嵌套路由路由的params参数路由的search参数路由的state参数编程式路由导航useRouterContextuseNavigationTypeuseOutletuseResolvedPath()总结项目地址 1.课程说明 概述 React Router以三个不同的包发布…

全方位移动机器人 SolidWorks 转 URDF 并在 Rviz 中仿真

全方位移动机器人 SolidWorks 转 URDF 并在 Rviz 中仿真 参考 solidworks转URDF&#xff0c;并且在rviz中仿真 从solidworks导出URDF模型 Export a SolidWorks Assembly to URDF Solidworks模型导出urdf SolidWorks 模型简化 将整车除车轮部分另存为零件&#xff0c;作为一个…

01|LangChain | 从入门到实战-介绍

​ ​ by&#xff1a;wenwenc9 一、基本知识储备 1、什么是大模型&#xff0c;LLM&#xff1f; 大模型(Large Language Model)是近年来一个很热门的研究方向。 使用大量的数据训练出一个非常大的模型。一般是数十亿到上万亿的参数规模。 这些大模型可以捕捉到非常复杂的语言…

构建强大的Web应用之Django详解

引言&#xff1a; Django是一个功能强大且灵活的Python Web框架&#xff0c;它提供了一套完整的工具和功能&#xff0c;帮助开发者快速构建高效的Web应用。本篇文章将带您逐步了解Django的基本概念和使用方法&#xff0c;并通过实际的代码案例&#xff0c;帮助您从零开始构建自…

MSQL系列(十三) Mysql实战-left/right/inner join 使用详解及索引优化

Mysql实战-left/right/inner join 使用详解及索引优化 前面我们讲解了BTree的索引结构&#xff0c;也详细讲解下Join的底层驱动表 选择原理&#xff0c;今天我们来了解一下为什么会出现内连接外连接&#xff0c;两种连接方式&#xff0c;另外实战一下内连接和几种最常用的join…

在IDEA运行spark程序(搭建Spark开发环境)

建议大家写在Linux上搭建好Hadoop的完全分布式集群环境和Spark集群环境&#xff0c;以下在IDEA中搭建的环境仅仅是在window系统上进行spark程序的开发学习&#xff0c;在window系统上可以不用安装hadoop和spark&#xff0c;spark程序可以通过pom.xml的文件配置&#xff0c;添加…

python创建一个简单的flask应用

下面用python在本地和服务器上分别创建一个简单的flask应用&#xff1a; 1.在pc本地 1&#xff09;pip flask后创建一个简单的脚本flask_demo.py from flask import Flaskapp Flask(__name__)app.route(/) def hello_world():return Hello, World!winR进入命令行&#xff0c;…

Envoy XDS协议学习

Envoy xds学习 资料地址 envoy官网资料连接 接口说明 xds分为增量接口和全量接口SotW&#xff1a;state of the world 即全量的数据Incremental&#xff1a; 增量的数据 具体接口 Listener: Listener Discovery Service (LDS) SotW: ListenerDiscoveryService.StreamList…

跳跳狗小游戏

欢迎来到程序小院 跳跳狗 玩法&#xff1a;一直弹跳的狗狗&#xff0c;鼠标点击屏幕左右方向键进行弹跳&#xff0c;弹到不同物品会有不同的分数减扣&#xff0c;规定的时间3分钟内完成狗狗弹跳&#xff0c;快去跳跳狗吧^^。开始游戏https://www.ormcc.com/play/gameStart/198…

飞书开发学习笔记(一)-应用创建和测试

飞书开发学习笔记(一)-应用创建和测试 一.前言 现在大企业用的办公IM软件中,飞书是口碑最好的&#xff0c;不得不说&#xff0c;字节在开发产品方面&#xff0c;确实有自己独到的竞争力&#xff0c;比如说抖音、头条、飞书。在办公会议和云文档的体验上&#xff0c;其它的办公…

实验四: Android 资源访问

实验四: Android 资源访问 4.1 实验目的 本次实验的目的是让大家熟悉 Android 中的资源&#xff0c;资源指的是代码中使用 的外部文件&#xff0c;这些文件作为应用程序的一部分&#xff0c;被编译到应用程序中。 4.2 实验要求 掌握字符串资源&#xff0c;颜色资源和尺寸资源…

第五部分:Tomcat

5.1&#xff1a;JavaWeb 5.1.1&#xff1a;JavaWeb的概念 ①什么是JavaWeb? JavaWeb是指所有通过Java语言编写可以通过浏览器访问的程序的总称 JavaWeb是基于请求和响应来开发的 ②什么是请求&#xff1f; 请求是指客户端给服务器发送数据&#xff0c;叫请求Request ③什么是…

时空智友企业流程化管控系统文件存在任意文件上传漏洞

时空智友企业流程化管控系统文件存在任意文件上传漏洞 免责声明漏洞描述漏洞影响漏洞危害网络测绘Fofa: app"时空智友V10.1" 漏洞复现1. 构造poc2. 发送数据包&#xff0c;上传文件3. 访问webshellwebshell地址 免责声明 仅用于技术交流,目的是向相关安全人员展示漏…

NUUO网络摄像头(NVR)RCE漏洞复现

简介 NUUO Network Video Recorder&#xff08;NVR&#xff09;是中国台湾NUUO公司的一款网络视频记录器。 NUUO NVR视频存储管理设备的__debugging_center_utils___.php文件存在未授权远程命令执行漏洞&#xff0c;攻击者可在没有任何权限的情况下通过log参数执行任意命令。…

【产品经理从0到1】ID(工业设计)知识构建

目录 一、ID知识架构思维导图 ​二、3D打印设计工具 导语&#xff1a;作为一个硬件产品经理&#xff0c;虽然不需要自己进行工业设计&#xff0c;但是若要对产品外观和品质细节进行更深入和准确的把控&#xff0c;就需要了解工业设计的相关知识。 一、ID知识架构思维导图 二、…

JavaScript(WebAPI)

文章目录 什么是WebAPIDOM 基本概念DOM 树事件 操作元素获取/修改元素内容获取/修改元素属性获取/修改表单元素属性获取/修改样式属性 网页版猜数字游戏实现一个表白墙 什么是WebAPI 前面学习的 JS 分成三个大的部分 ECMAScript: 基础语法部分DOM API: 操作页面结构BOM API: …

两天实现思维导图的协同编辑?用Yjs真的可以

最近使用 Yjs 给自己开源的一个思维导图加上了协同编辑的功能&#xff0c;得益于该框架的强大&#xff0c;一直觉得很复杂的协同编辑能力没想到实现起来异常的简单&#xff0c;所以通过本文来安利给各位。 要实现协同编辑&#xff0c;目前主要有两种算法&#xff0c;一是 OT&a…

关于Intel Press出版的《Bedyong BIOS》第2版的观后感

文章目录 此书的背景UEFI运行时DXE基础CPU架构协议PCI协议UEFI驱动的初始化串口DXE驱动示例 《Beyond BIOS》首先介绍一个简单的UEFI应用程序模块&#xff0c;用于展示UEFI应用程序的行为。作者为Waldo。该模块名为“InitializeHelloApplication”&#xff0c;它接受两个参数&a…

【Mysql】Mysql中表连接的原理

连接简介 在实际工作中&#xff0c;我们需要查询的数据很可能不是放在一张表中&#xff0c;而是需要同时从多张表中获取。下面我们以简单的两张表为例来进行说明。 连接的本质 为方便测试说明&#xff0c;&#xff0c;先创建两个简单的表并给它们填充一点数据&#xff1a; …