「直播回放」使用 PLC + OPC + TDengine,快速搭建烟草生产监测系统

在烟草工业场景里,多数设备的自动控制都是通过 PLC 可编程逻辑控制器来实现的,PLC 再将采集的数据汇聚至 OPC 服务器。传统的 PI System、实时数据库、组态软件等与 OPC 相连,提供分析、可视化、报警等功能,这类系统存在一些问题:

  1. 收费是按照测点数进行的,价格昂贵,而且需要有商务谈判才能开始 PoC,无法在购买决策前做足够的验证测试工作;
  2. 系统封闭,如果想集成一个新的 BI、AI 或可视化工具,需要原厂商的支持,十分困难;
  3. 数据的实时分发、分享功能薄弱;
  4. 架构落后,往往基于 Windows,部署维护还十分复杂。

借助 TDengine 3.0 云服务或 TDengine Enterprise(企业版),上述问题便可迎刃而解。作为物联网、工业大数据平台,TDengine 内嵌对 OPC UA/DA、MQTT 等协议的支持。通过网页上简单的配置,无需一行代码,就能将 PLC 采集的数据通过 OPC 连接器源源不断的写入 TDengine,再通过与可视化工具 Grafana、BI 工具(如 Power BI、帆软、永洪)的无缝集成,就可以提供数据的可视化、报表、报警等系列功能。而且由于 TDengine 支持标准的 JDBC、ODBC 接口,众多的 BI、AI 和报表工具都可以无缝集成,而不被厂商绑定。

同时,你可以使用 TDengine Cloud,无商务谈判,免费注册,几分钟内就可以搭建好整个系统,验证是否工作,无任何前期费用和风险。如果验证没问题,可以继续使用云服务,也可以切换到 TDengine Enterprise 做本地化部署。对于云服务,5 万个测点,如果数据采集间隔是一秒,最基础的 TDengine Cloud 入门级就可满足要求,一个月仅需 1200 元。与传统昂贵的工业软件相比,大大降低了投入的成本。

本文以 TDengine Cloud 为例,介绍该方案在烟草制丝车间的具体实现。

在下面例子里,我们将从 OPC Server 采集三个指标:冷床出口水分、计量秤工艺流量及烘丝出口温度,并希望在可视化界面实现以下功能:

  1. 实时监测数采完备率和在线状态:避免数据采集出现异常时不能及时观察到,导致长时间原始数据缺失
  2. 实时监测各指标值、变化趋势曲线:及时掌握生产过程中关键指标的变化

本文中可视化工具选择了开源的 Grafana,你也可以使用国产的 BI 软件来实现。这个方案也适用于 TDengine Enterprise 企业版。

1. TDengine Cloud OPC 接入介绍

为方便不同数据源的接入,涛思打造了一套数据接入方案来接入各种不同类型的数据源。它的核心功能组件是 taosExplorer(TDengine Cloud 为控制台)、taosX Agent 及各类数据源连接器。TDengine 支持两种 OPC 接入:OPC UA、OPC DA。

需要注意的是,TDengine Cloud 仅支持代理模式接入各类数据源。TDengine Enterprise 则是直连、代理两种连接模式均支持。

以某个工厂为例,它的数据中心部署在工厂内部(车间机房、工厂中心机房),各车间通过 OPC 向外提供的数据服务和数据中心处于同一内部网络,这种情况可采用直连模式。如果该工厂的数据中心部署在云端(TDengine Cloud、共有云、上级集团私有云),且工厂与云端之间没有 VPN 连接时,这种情形可采用代理模式。

下面以 TDengine Cloud 云服务+代理模式为例,介绍如何快速搭建 OPC UA+TDengine+Grafana 环境,实现工业 OPC 数据采集的可视化。

2. 部署环境

本文的部署拓扑图如下:

  • 本地 MacBook Pro,Grafana 部署在本机
  • taosX Agent 代理、OPC UA Simulation Server 部署在虚拟机 vm1 上,Ubuntu 20.04
  • TDengine 采用 TDengine Cloud 云服务入门版

提示:

  • TDengine Cloud 的注册或登录请参照 https://cloud.taosdata.com/login
  • OPC UA Server 在本文中将采用 PROSYS OPCUA Simulation Server 5.4.6,下载地址为 Prosys OPC UA Simulation Server - Prosys OPC
  • Grafana 下载地址为 Download Grafana | Grafana Labs

Grafana 数据源安装

Grafana 安装后,需要安装 TDengine 的数据源插件,有两种方式供选择:

  • 在 Grafana Configuration – Datasource 页面中,搜索 TDengine,完成安装【推荐】
  • 通过运行下面的命令完成该插件安装【以 Linux 为例】
bash -c "$(curl -fsSL https://raw.githubusercontent.com/taosdata/grafanaplugin/master/install.sh)"

3. 配置OPC UA Server

为方便展示,本文将采用 PROSYS OPC UA Simulation Server 的功能,模拟生成 10 个双精度点位的随机数。

在 MacBook Pro 上,启动 PROSYS OPC UA Simulation Server。

切换至 Objects 页面,右键点击 Random:BaseDataVariableType,Duplicate Node 创建 10 个采集点位,均为双精度浮点数。完成此步骤后,将生成节点地址 ns=3;i=1008~1017。

生成的点位默认随机数范围是 [-2,2],如需修改,可点击每个点位 Value 标签进行设置。默认的数值生成间隔为 1000ms。

4. 创建代理并部署 taosX Agent

登录 TDengine Cloud 后进入控制台,点击数据写入->数据源->创建新的代理

根据提示,在 vm1 上下载并部署 taosX Agent。

tar xf taosx-agent-xxx-linux-x64.tar.gz
cd taosx-agent-xxx-linux-x64
./install.sh

设置代理名称:agent-vm1

获得 Endpoint 和 token,将其复制、粘贴至 vm1 上的 taosX Agent 的配置文件中:/etc/taos/agent.toml

在 vm1 上启动 taosX Agent:

systemctl start taosx-agent

5. 数据准备

在配置 OPC UA 采集任务之前,还有两个准备工作需要完成:

  • 在 TDengine Cloud 创建 opcdemo 库
  • 创建批量导入用的采集点位 CSV 文件

5.1 创建 opcdemo 库

登录 TDengine Cloud 后进入控制台,点击数据浏览器-> + 创建数据库,输入名称 opcdemo、设置 CACHEMODEL 为 both 后,完成创建。

5.2 创建点位 CSV 文件

为方便批量导入采集点位,TDengine Cloud 提供了以 CSV 文件批量导入点位信息的功能。

根据前面的 OPC UA Simulation Server 创建的 10 个点位信息,创建 CSV 文件。

文件填写说明:

  • point_id: OPC 点位地址
  • tbname: 该点位地址对应 TDengine 中的子表名
  • type: 该点位地址值的数据类型,对应普通列 val。常见的数据类型有 int/bigint/float/double/varchar/nchar/bool,其中 varchar/ncahr 需给出最大允许长度,如 varchar(50)/nchar(50)
  • stable: 子表所属的超级表名
  • 时间戳列:
    • ts_col: OPC 原始采集时间戳的列名,默认 ts,默认为首列时间戳
    • received_ts_col: 【可选】TDengine 接收时间戳对应的列名
    • 一旦配置了 received_ts_col 列,该列将取代 ts_col 成为首列时间戳,ts_col 列将做为普通列保留
  • 普通列:
    • val 列:存放采集值,类型由用户定义,本文中类型为 double
    • quality 列:质量信息,INT 型,系统默认自动创建
  • tag:: 标签列定义,以tag::nchar(10)::unit为例,将创建一个名为 unit,类型为 nchar(10) 的标签列。需要说明的是,每张超级表默认创建两个标签列:point_id VARCHAR(256), point_name VARCHAR(256)
信息点编码,OPC TAG点地址,数据类型,对应超级表表名,OPC原始时间列名,标签列1
tbname,point_id,type,stable,ts_col,tag::nchar(10)::unit
d_1008,ns=3;i=1008,double,stb_double,ts,%H
d_1009,ns=3;i=1009,double,stb_double,ts,kg/h
d_1010,ns=3;i=1010,double,stb_double,ts,℃
d_1011,ns=3;i=1011,double,stb_double,ts,%H
d_1012,ns=3;i=1012,double,stb_double,ts,kg/h
d_1013,ns=3;i=1013,double,stb_double,ts,℃
d_1014,ns=3;i=1014,double,stb_double,ts,%H
d_1015,ns=3;i=1015,double,stb_double,ts,kg/h
d_1016,ns=3;i=1016,double,stb_double,ts,℃
d_1017,ns=3;i=1017,double,stb_double,ts,℃

以上 CSV 文件成功导入后,将在 TDengine 中在指定的库中(本文为 opcdemo)创建一张名为 stb_double 的超级表,并以之为模板创建 10 张子表,名为 d_1008/d_1009…/d_1017。

taos> desc stb_double;
             field              |          type          |   length    |    note    |
=====================================================================================
 ts                             | TIMESTAMP              |           8 |            |
 quality                        | INT                    |           4 |            |
 val                            | DOUBLE                 |           8 |            |
 point_id                       | VARCHAR                |         256 | TAG        |
 point_name                     | VARCHAR                |         256 | TAG        |
 unit                           | NCHAR                  |          10 | TAG        |
Query OK, 6 row(s) in set (0.008236s)

6. 创建数据采集任务

登入控制台,点击数据写入->数据源->添加数据源

填写数据源名称,选择类型:OPC-UA,代理选刚新建的代理 agent-vm1,目标数据库 opcdemo,输入 OPC UA Server 的服务地址。

本文代理模式下,OPC UA Server 部署在vm1上,服务地址填写 127.0.0.1 即可,端口号及详细信息参见 PROSYS Simulation Server 的 Status 页面。

点击“选择文件”按钮,进入 CSV 文件导入界面。

采集间隔设置为 1 秒,采集模式设置为 observe。

本次 CSV 共采集 10 个点位,为优化写入性能,将批次大小调整为 10。如有必要,可选择开启 Debug 日志。

7. 数据采集验证

登入控制台,点击数据浏览器->Sql,执行多次最新数据查询语句,观察查询结果。如结果行时间戳单调递增,则表示数据采集链路工作正常,数据已正常入库了。

select last_row(*) from opcdemo.stb_double;

8. 数据可视化

Grafana 部署在本地 MacBook Pro 上,希望访问云服务上的 TDengine 实例中的 opcdemo 库的数据。根据云服务控制台【工具-Grafana】页面的指引,填入 Host、Cloud Token,删除 User、Password,保存退出。

选择 Import Dashboard,点击 Upload JSON file 导入 OPCDemo.json 文件(文件代码详见 OPC Demo-0925.json - TDengine | 涛思数据),选择对应的 TDengine 的 DataSource,完成 Dashboard 导入。

点击 OPC Demo Dashboard,打开该仪表板,可以观察到实时数据的变化。

9. OPC Demo Dashboard 使用说明

该仪表盘可以选择三个物理量作为监控对象:metric01、metric02、metric03,分别对应:冷床出口水分、工艺流量、烘丝出口温度,位于第一行,可通过下拉框选择;用户可设置设备离线阈值 offline_threshold(单位:秒),通过下拉框选择。

首行三个控件,分别是 metric01 的分钟级数采完备率、整体数采完备率以及在线状态。

在烟草生产行业,数据采集是否有缺漏,是企业数据运营管理的基础。在本文中我们提出两个指标来衡量数采完备:分钟级数采完备率、整体数采完备率。

9.1 分钟级数采完备率

算法说明:以一分钟划分时间窗口,分段计算当前时间区间(最近 5/15/30 分钟…)内 metric01 物理量采集点数除以 60 后的比值 – 默认数据生成间隔为 1000ms,即 1 秒。

select _wstart, count(*)/60 from opcdemo.$metric01 where _c0 >= $from and _c0 < $to interval(1m) limit 100 offset 1

9.2 整体数采完备率

算法说明:计算 metric01 物理量采集点数除以当前时间区间内秒级跨度的比值,spread 计算的时间值单位与 opcdemo 库的 precision 一致,默认为 ms。

select count(*)/(spread(_c0 )/1000+1) from opcdemo.$metric01 where _c0 >= $from and _c0 < $to

9.3 在线状态

设备是否按设计要求及时上报数据,可通过在线状态的监测来实现。如在指定时间阈值内无采集数据到达,显示红色 offline 以示警。

算法说明:判断 metric01 物理量在指定离线阈值内是否有数据入库,如有则判 Online,否则判 Offline。

select count(*) from (select last_row(*) from opcdemo.$metric01 where _c0 >= now-$offline_thresholds)

三个 Gauge 仪表表头控件,用于显示烘丝出口水分、工艺流量、烘丝出口温度的最新值。

select last_row(val) from opcdemo.$metric01

三个 TimeSeries 曲线控件,用于显示烘丝出口水分、工艺流量、烘丝出口温度在当前时间区间内的动态曲线,显示值为动态时间窗口内采集值的算术平均值。

select _wstart, avg(val) from opcdemo.$metric01 where _c0 >= $from and _c0 < $to interval($interval) fill(null)

以上以制丝车间的几个典型参数为例,介绍了如何利用 TDengine 的 OPC 连接器,将数据采集入库,并通过 Grafana 将这些参数以动态可视化方式直观地呈现出来。

掌握了以上基本语法,大家可以举一反三,结合自己的实际业务要求,不用写一行代码,就可以轻松地定制自己专属的 Grafana Dashboard,进行实时采集数据监控了。

10. 开发实时业务应用

前面阐述了如何基于 TDengine 实现 OPC 数采接入、持久化,以及基于 Grafana 方便地实现实时数据的可视化。估计会有读者想更进一步了解如何基于 TDengine 来开发实时业务应用,如 SPC 统计过程控制能否方便地实现呢?

下面我们简单介绍一下,如何利用 TDengine 来开发 SPC 实时业务应用。

SPC:统计过程控制是工业界广泛使用的质量分析工具,它采用统计技术对生产过程的某个物理量进行实时监控计算,快速识别出生产过程中产品质量的随机波动与异常波动,对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。

SPC 的第一步是计算标准差。TDengine 提供 stddev 标准差函数,方便用户快速从时序数据算得标准差 σ。

通过实时查询可获取指定时间段的时序数据,再通过 TDengine 内嵌函数即可直接算得:均值 μ(avg)、最大(max)、最小(min)、跨距(spread)。

结合前面算得的标准差 σ、该物理量设计的合格上下限范围 USL-LSL、目标值 T,可算得 SPC 各过程参数:Cp/Cr/Cpu/Cpl/Cpk/Cpm/Pp/Pr/Ppu/Ppl/Ppk/Ppm。

TDengine 提供各种主流编程语言如 C/C++、Java、Go、RUST、Python、C# 的驱动程序,也提供 RESTful 接口,支持 SQL 语法,因此应用开发的学习成本几乎为零,十分简单。

11. 总结

很多用户对于如何快速、便捷呈现工业现场的实时时序数据比较畏惧,觉得需要耗费大量人力进行应用开发才能实现,影响了时序数据快速有效的利用。其实,和 IT 运维采用 Telegraf+TDengine+Grafana 一样,烟草生产企业可以非常方便地利用 TDengine 的 OPC 接入能力,通过搭建 OPC+TDengine+Grafana 方案,快速实现低代码的业务数据监控。

需要说明的是,本文的例子是一较简单的场景:taosX Agent 代理和 OPC UA Server 部署在同一节点上。其他的场景可以从这个场景中演变而来,如:

  • taosX Agent 与 OPC UA Server 分别部署在不同节点上
  • 部署多个 taosX Agent,每个 Agent 对接多个 OPC UA Server

实际部署拓扑都可以按需规划、实施,取决于您实际的部署需求。

TDengine 不仅支持 OPC,也支持 MQTT, PI System, Wonderware 等数据源的无缝接入,受篇幅所限本文不多做介绍,仅分享基于 TDengine Cloud 提供 OPC+TDengine+Grafana 方案的具体实现。这套方案同样可以基于 TDengine Enterprise 企业版来实现,如果您有这样的需求,请联系北京涛思商务团队获取相关资源。

直播视频回放:

TDengine 行业产品经理聊聊以烟草行业为例,如何基于 PLC + OPC + TDengine 快速搭建工业生产监测系统_哔哩哔哩_bilibili


 了解更多 TDengine Database的具体细节,可在GitHub上查看相关源代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/114175.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

历年网规上午真题(2017年)

解析:D/C 计算机主要性能指标:时钟频率(主频)、运算速度、运算精度、内存大小、数据处理速率(PDR)等 数据库主要指标:最大并发、负载均衡能力、最大连接数等 解析:A 敏捷开发是一种应对快速变化的需求的一种软件开发方法,是一种以人为核心、迭代、循序渐进的开发方…

项目实战:编辑页面加载库存信息

1、前端编辑页面加载水果库存信息逻辑edit.js let queryString window.location.search.substring(1) if(queryString){var fid queryString.split("")[1]window.onloadfunction(){loadFruit(fid)}loadFruit function(fid){axios({method:get,url:edit,params:{fi…

【使用Python编写游戏辅助工具】第四篇:Windows窗口操作

前言 这里是【使用Python编写游戏辅助工具】的第四篇&#xff1a;Windows窗口操作。本文主要介绍使用Python来实现Windows窗口的各种操作。 Windows窗口操作是游戏辅助功能中不可或缺的一部分。 Windows窗口操作指的是与Windows操作系统中的窗口进行交互和控制的操作&#xff…

【Redis】安装(Linuxwindow)及Redis的常用命令

Redis简介 Redis是一个开源&#xff08;BSD许可&#xff09;&#xff0c;内存存储的数据结构服务器&#xff0c;可用作数据库&#xff0c;高速缓存和消息队列代理。 它支持字符串、哈希表、列表、集合、有序集合&#xff0c;位图&#xff0c;hyperloglogs等数据类型。内置复…

【Java初阶练习题】-- 循环+递归练习题

循环练习题02 打印X图形计算1/1-1/21/3-1/41/5 …… 1/99 - 1/100 的值输出一个整数的每一位如&#xff1a;123的每一位是3&#xff0c;2&#xff0c;1模拟登录使用方法求最大值求斐波那契数列的第n项。(迭代实现)求和的重载求最大值方法的重载递归求N阶乘递归求 1 2 3 ...…

C++之初始化列表详细剖析

一、初始化列表定义 初始化列表&#xff1a;以一个冒号开始&#xff0c;接着是一个以逗号分隔的数据成员列表&#xff0c;每个"成员变量"后面跟一个放在括号中的初始值或表达式。 class Date { public:Date(int year, int month, int day): _year(year), _month(mont…

华纳云:centos系统中怎么查看cpu信息?

在CentOS系统中&#xff0c;我们可以使用一些命令来查看CPU的详细信息。下面介绍几个常用的命令&#xff1a; 1. lscpu lscpu命令可以显示CPU的架构、型号、核心数、线程数、频率等信息。 # lscpu 执行以上命令后&#xff0c;会输出类似以下内容&#xff1a; 2. cat /proc/…

3D医学三维技术影像PACS系统源码

一、系统概述 3D医学影像PACS系统&#xff0c;它集影像存储服务器、影像诊断工作站及RIS报告系统于一身,主要有图像处理模块、影像数据管理模块、RIS报告模块、光盘存档模块、DICOM通讯模块、胶片打印输出等模块组成&#xff0c; 具有完善的影像数据库管理功能&#xff0c;强大…

Oil Crop Science:DAP-seq技术揭示花生中AhTWRKY24和AhTWRKY106转录因子下游调控基因

2023年6月4日&#xff0c;青岛农业大学草业学院宋辉教授课题组的研究成果&#xff0c;发表在Oil Crop Science期刊上&#xff0c;文章题目为Identification of the target genes of AhTWRKY24 and AhTWRKY106 transcription factors reveals their regulatory network in Arach…

【好书推荐】AI时代架构师修炼之道:ChatGPT让架构师插上翅膀

目录 前言 ChatGPT对架构师工作的帮助 快速理解和分析需求 提供代码建议和解决方案 辅助系统设计和优化 提高团队协作效率 如何使用ChatGPT提高架构师工作效率 了解用户需求和分析问题 编码实践和问题解决 系统设计和优化建议 团队协作和沟通效率提升 知识管理和文…

K8s集群

统一时间&#xff1a;ntpdate(都做) ntpdate -b ntp1.aliyun.com */1 * * * * /usr/sbin/ntpdate -b ntp1.aliyun.com systemctl status docker vi /etc/docker/daemon.json systemctl restart docker m: vim kubernetes.sh cat >> /etc/yum.repos.d/kubernetes.repo…

Windows系统搭建网盘神器filebrowser结合内网穿透实现公网访问

Windows系统搭建网盘神器filebrowser结合内网穿透实现公网访问 文章目录 Windows系统搭建网盘神器filebrowser结合内网穿透实现公网访问前言1.下载安装File Browser2.启动访问File Browser3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3…

C++动态内存检查工具 - AddressSanitizer

参考 https://www.qt.io/blog/2013/04/17/using-gccs-4-8-0-address-sanitizer-with-qt https://doc.qt.io/qt-6/qmake-variable-reference.html#qmake-lflags AddressSanitizer是gcc编译器套件的一部分(gcc版本 > 4.8)&#xff0c;只要在编译器调用中添加-fsanitizeaddre…

AtCoder abc143

D - Triangles 排序后two pointer # -*- coding: utf-8 -*- # time : 2023/6/2 13:30 # author : yhdutongwoo.cn # desc : # file : atcoder.py # software : PyCharmimport bisect import copy import sys from sortedcontainers import SortedList from coll…

Android开发知识学习——从Retrofit原理来看HTTP

文章目录 Retrofit 使用方法简介Retrofit 源码结构总结扔物线读源码的思路与方式 Retrofit 使用方法简介 导包 implementation com.squareup.retrofit2:retrofit:最新版本创建一个 interface 作为 Web Service 的请求集合&#xff0c;在里面用注解 &#xff08;Annotation&…

Spring Boot整合Swagger

&#x1f648;作者简介&#xff1a;练习时长两年半的Java up主 &#x1f649;个人主页&#xff1a;程序员老茶 &#x1f64a; ps:点赞&#x1f44d;是免费的&#xff0c;却可以让写博客的作者开心好久好久&#x1f60e; &#x1f4da;系列专栏&#xff1a;Java全栈&#xff0c;…

新建Git仓库后!如何将本地项目直接推送上到git仓库中的详细教程!

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、Git新建仓库二、来到你的本地仓库 前言 我们在git新建仓库后&#xff0c;如何直接在本地的项目文件夹中直接推送到git仓库中呢&#xff01;那么下面是详细…

HTTP 协议请求头 If-Match、If-None-Match 和 ETag

概述 在 HTTP 协议中&#xff0c;请求头 If-Match、If-None-Match、If-Modified-Since、If-Unmodified-Since、If-Range 主要是为了解决浏览器缓存数据而定义的请求头标准&#xff0c;按照协议规范正确的判断和使用这几个请求头&#xff0c;可以更精准的处理浏览器缓存&#x…

《Pytorch新手入门》第二节-动手搭建神经网络

《Pytorch新手入门》第二节-动手搭建神经网络 一、神经网络介绍二、使用torch.nn搭建神经网络2.1 定义网络2.2 torch.autograd.Variable2.3 损失函数与反向传播2.4 优化器torch.optim 三、实战-实现图像分类(CIFAR-10数据集)3.1 CIFAR-10数据集加载与预处理3.2 定义网络结构3.3…

QT+SQLite数据库配置和使用

一、简介 1.1 SQLite&#xff08;sql&#xff09;是一款开源轻量级的数据库软件&#xff0c;不需要server&#xff0c;可以集成在其他软件中&#xff0c;非常适合嵌入式系统。Qt5以上版本可以直接使用SQLite&#xff08;Qt自带驱动&#xff09;。 二、下载和配置 2.1 SQLite下载…