OSPF复习(2)

目录

一、LSA的头部

二、6种类型的LSA(课堂演示)

1、type1-LSA:----重要且复杂

2、type2-LSA:

3、type3-LSA:

4、type4-LSA:

5、type5-LSA:

6、type7-LSA:

三、OSPF的网络类型

1、定义:

2、类型:

(1)NBMA(非广播多点可达网络)

(2)P2MP(点到多点网络)

 (3)Broadcast(广播网络)

(4)P2P(点到点网络)

四、基于OSPF的MGRE实验


一、LSA的头部

        LSA是OSPF的一个核心内容,如果没有LSA,OSPF是无法描述网络的拓扑结构及网段信息的,也无法 传递路由信息,更加无法正常工作,在OSPFV2中,需要我们掌握的主要有6种。

LSA头部一共20byte,每个字段的含义如下。

        链路状态老化时间(Link-State Age):指示该条LSA的老化时间,即它存在了多长时间,单位为秒,1800s周期归0,触发当下归0

        MAX age --- 3600S ------ 当一条LSA的老化时间到达最大老化时间时,将被认定失效,将从本地的 LSDB中删除掉

        可选项(Options):每一个比特位都对应了OSPF 所支持的某种特性。 ------ 和hello包中的一样,包含特殊区域标 记

        链路状态类型(Link-State Type): 指示本条LSA的类型。每种 LSA用于描述OSPF 网络的某个部分,所有的LSA 类型都定义了相应的类型编号。

        链路状态ID(Link-State ID): LSA的标识。不同的LSA类型,对该字段的定义是不同的。

        通告路由器(Advertising Rout        er): 始发路由器, 产生该LSA的路由器的Router-ID

        链路状态序列号(Link-Sate Sequence Number):该LSA的序列号,该字段用于判断LSA的新旧或是否存在重复(相同的路由信息,序列号越大的越新

        链路状态校验和(Link-State Checksum):校验和会参与LSA的新旧比较。当两条LSA三元组相同,并且序列号也 相同时,则可以使用校验和比较,和大的认定为新

        长度(Length):一条LSA的总长度

链路状态类型,链路状态ID,通告路由器 ---- “LSA三元组” --- 通过着三个参数可以唯一的标识出一条LSA

二、6种类型的LSA(课堂演示)

1、type1-LSA:----重要且复杂

        (1)定义:router LSA

                描述区域内部与路由器直连的链路信息(链路类型、开销值等)

                仅在区域内部传输

                每台路由器都会产生Type1 LSA

[R1]dis ospf lsdb router 查看Type1 LSA的具体信息

        (2)LS ID:发出该LSA的路由器的router-id

        (3)Adv Rtr:始发路由器,产生该LSA的路由器的router-id

        (4)链路ID:不同的链路类型,对链路ID值的定义是不同的。

        (5)链路数据(Link Data):不同的链路类型对链路数据的定义是不同的。

        (6)link-type:链路类型

                transnet:

                       类型:广播网络或者NBMA

                        link-id:本网段的DR的IP地址

                        Date:本路由器在该网段的IP地址

                P2P:

                        类型:ppp

                        link-id:该网段对端路由器的router-id

                        Date:本路由器在该网段的与对端路由器相连的接口的IP地址

                stubnet(末梢网络):

                       类型:p2p\环回口\末梢网络

                        link-id:该网段的网络地址

                        data:该网段的子网掩码

                Virtual(虚链路):

                        类型:虚链路

                        link-id:虚链路邻居的router id

                        data:去往该虚连接邻居的本地接口的IP地址

        (7)VEB标志位:

                        V位(Virtual Link Endpoint Bit):如果该比特位被设置为1,则表示该路由器为Virtual Link的端点。

                        E位(External Bit):如果E比特位被设置为1,则表示该路由器为ASBR。在Stub区域中,不允许出现E比特位被设置 为1的Type-1 LSA,因此Stub区域内不允许出现ASBR。

                        B位(Border Bit):如果B比特位被设置为1,则表示该路由器为两个区域的边界路由器,字母B意为Border(边界

2、type2-LSA:

        (1)定义:

                network LSA

                描述区域内的MA网络(广播网络、NBMA网络)链路的路由器及掩码信息

                仅在区域内部传输

                只有DR才会产生type2_LSA

        [R1]dis ospf lsdb network 查看Type2 LSA的具体信息

        (2)内容:

                LS ID:该网段的DR的IP地址

                Adv Rtr:该网段DR的router-id

                network mask:该网段DR的IP地址的子网掩码信息

3、type3-LSA:

        (1)定义:

                Summary LSA(聚合LSA)

                在整个OSPF区域内,描述其他区域的链路信息

                以子网形式传播,类似直接传递路由

                只有ABR会产生type3_LSA

                [R1]dis ospf lsdb summary 查看Type3 LSA的具体信息

4、type4-LSA:

        (1)定义:

                Asbr-summary LSA

                描述ASBR的信息

                只有ABR才会产生TYPE4 LSA

        (2)内容:

                LS ID:ASBR的router-id

                Adv Rtv:通告描述该ASBR的ABR的router-id

                [R1]dis ospf lsdb asbr 查看Type4 LSA的具体信息

        注:在ASBR本区域的内部路由器,不会产生到达该ASBR的4类LSA

5、type5-LSA:

        (1)定义:

                AS_extenal LSA,传递域外 路由信息

                描述AS外部引入的路由信息,会传播到所有区域(特殊区域除外)

                只有ASBR会产生type5_LSA

        (2)内容:

                LS ID:外部路由的目的网络地址

                 Adv Rtv:引入该网络路由的ASBR的ABR的router-id

                net mask:引入的该目标网段的子网掩码

                [R1]dis ospf lsdb ase 查看Type5 LSA的具体信息

6、type7-LSA:

        (1)定义:

                NSSA LAS

                描述在NSSA区域引入的AS外部路由信息

                只会出现在NSSA和totally NASS区域,不能进入area 0

                7类LSA生成路由信息的标记位,O_NSSA,优先级150

        (2)内容:

                LS ID:外部某个网段的网络地址

                Adv Rtv:引入该网络路由的ASBR的ABR的router-id

区域内传拓扑,区域间传路由

                <R2>display  ospf routing查看OSPF路由表

三、OSPF的网络类型

1、定义:

         对于不同的二层链路类型的网段,OSPF会生成不同的网络类型 不同的网络类型,DR\BDR选举,LSA细节,协议报文发送形式等会有所不同

2、类型:

(1)NBMA(非广播多点可达网络)

                非广播多点可达网,帧中继默认的网络类型

                单播发送协议报文(天生不支持广播和组播),需手动指定邻居(麻烦,手工一个个配置邻居麻烦,万一邻居地 址变动,又得重新配置)

        命令:[r2-ospf-1]peer 192.168.1.1 (邻居IP地址)

                需要选举DR\BDR,为了减少LSA的泛洪,减少网络负担

                 hello-time 是30秒,dead-time 是120秒

(2)P2MP(点到多点网络)

                点到多点网络,由其他网络类型手动更改:例如在ospf接口下:ospf network-type 网络类型

                模拟组播发送协议报文(帧中继建立子接口模拟组播发报文),需要手动指定邻居;       

                不选举DR\BDR,因为设备少,所以不选举

                hello-time 是10秒,dead-time 是40秒         

 (3)Broadcast(广播网络)

                        广播网络,以太网默认的网络类型

                        组播或广播发送协议报文

                        需要选举DR\BDR,224.0.0.5是所有运行OSPF(DROTHER)的接口会监听,

        224.0.0.6是所有DR/BDR的接口 会监听

                        hello-time 是30秒,dead-time 是120秒

(4)P2P(点到点网络)

                        点到点网络,ppp默认网络

                        组播协议发送报文

                        不选举DR\BDR

                        hello-time 是10秒,dead-time 是40秒

四、基于OSPF的MGRE实验

基于ospf的MGRE出现问题:ospf的路由表学习不全

问题1:Tunnel接口类型为P2P类型,不选举DR/BDR,使得设备无法正常建立邻接关系, 解决方法:更改网络中tunnel接口类型为广播或者P2MP

        [R2]interface Tunnel 0/0/0

        [R2-Tunnel0/0/0]ospf network-type broadcast

问题2:DR和BDR选举混乱,无法正常建邻

更改网络类型后,广播网络中中心站点和分支站点处于同一个广播域,此时需要进行DR和BDR的选 举,但是在分支站点的世界里只和中心站点认识,分支站点和分支站点不认识,这就会发生多个分支 站点和一个中心站点互相竞选DR和BDR,这样会造成选举结果混乱,可在中心站点看到混乱的场景 解 决方法:将分支站点的dr选举优先级变0,这样就能保证中心站点是整个广播网络中唯一的DR

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/113975.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于Docker-consul容器服务更新与发现

目录 一、什么是服务注册与发现&#xff1a; 二、Docker-consul介绍&#xff1a; 三、consul的关键特性&#xff1a; 四、consul部署&#xff1a; 1.部署规划&#xff1a; 2.consul服务器部署&#xff1a; 2.1 建立consul服务&#xff1a; 启动consul后默认会监听5个端口&a…

【案例】3D地球(vue+three.js)

需要下载插件 <template><div class"demo"><div id"container" ref"content"></div></div> </template> <script> import * as THREE from three; // import mapJSON from ../map.json; import { Or…

MetaAI提出全新验证链框架CoVE,大模型也可以通过“三省吾身”来缓解幻觉现象

​ 论文名称&#xff1a; Chain-of-Verification Reduces Hallucination in Large Language Models 论文链接&#xff1a; https://arxiv.org/abs/2309.11495 曾子曰&#xff1a;“吾日三省吾身” --出自《论语学而》 时至今日&#xff0c;生成幻觉&#xff08;hallucination&…

【Docker】十分钟完成redis安装,你也可以的!!!

十分钟完成redis安装&#xff0c;你也可以的 前言安装步骤1.创建安装目录2.创建docker-compose.yml3.创建redis.conf文件4.启动容器5.连接redis 总结 前言 本文基于Docker安装redis&#xff0c;首先确保系统安装了docker和docker-compose。 没有使用过docker朋友可以去看看博主…

呼吸灯【FPGA】

晶振50Mhz 1us 等于 计0~49 1ms等于 0~999us 1s等于 0~999ms //led_outalways(posedge FPGA_CLK_50M_b5 or negedge reset_e8) //【死循环】敏感【触发条件&#xff1a;上升沿 clk】【运行副本】if(reset_e81b0)begin //50Mhz晶振&#xff0c; 49_999_999 是 1秒…

LiveMeida视频接入网关

一、产品简介 视频接入网关主要部署在视频存储节点或视频汇聚节点&#xff0c;面向不同用户&#xff0c;主要用于对接不同厂家、不同型号的摄像机设备&#xff0c;获取摄像机视频后&#xff0c;以统一标准的视频格式和传输协议&#xff0c;将视频推送至上层联网/应用平台。可广…

洒洒水阿萨阿萨

1. 多表查询 多表查询(也叫关联查询, 联结查询): 可以用于检索涉及到多个表的数据. 使用关联查询, 可以将两张或多张表中的数据通过某种关系联系在一起, 从而生成需要的结果集.前提条件: 这些一起查询的表之间它们之间一定是有关联关系.# 先熟悉一下三张表: -- 1. 员工表(11个…

R语言使用surveyCV包对NHANES数据(复杂调查加权数据)进行10折交叉验证

美国国家健康与营养调查&#xff08; NHANES, National Health and Nutrition Examination Survey&#xff09;是一项基于人群的横断面调查&#xff0c;旨在收集有关美国家庭人口健康和营养的信息。 地址为&#xff1a;https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 既往咱们…

上海物理、化学高考命题趋势及2024年上海物理、化学高考备考建议

在上海高考时&#xff0c;物理、化学虽然不像语文、英语和数学那样分数高&#xff0c;但是仍然很重要。那么&#xff0c;从这几年的上海物理、化学的高考题目来看&#xff0c;我们互发现什么命题趋势和考题特点呢&#xff1f;如何备考接下来的2024年高考物理和化学呢&#xff1…

vue3视频大小适配浏览器窗口大小

目标&#xff1a;按浏览器窗口的大小&#xff0c;平铺视频&#xff0c;来适配屏幕的大小。 考虑使用 DPlayer.js、video.js、vue-video-player等视频插件&#xff0c;但报了各种各样的错&#xff1b;试过使用 js 对视频进行同比例放大&#xff0c;再判断其与窗口的大小取最小值…

什么是IPA,和RPA有啥区别和联系?

∵ IPA中包含了RPA的“PA”&#xff0c;AI的“I” ∴IPARPAAI&#xff0c;等式成立&#xff01; AI&#xff1a;或人工智能&#xff0c;是一种复杂的计算机技术&#xff0c;旨在模仿人类智能行为和决策的能力。它涵盖了多种技术和方法&#xff0c;包括&#xff1a;机器学习&am…

【基带开发】AD9361 复乘 com_cmpy_a12_b12

IP核 tb_com module tb_com();reg ad9361_l_clk,rst; initial beginad9361_l_clk0;forever #4.545 ad9361_l_clk~ad9361_l_clk; end initial beginrst1;#9.09 rst0; end wire [63 : 0] m_fll_phase_shift_dout; // fll 输出 dout // FLL Phase Shift com_cmpy_a12_b12 FLL_P…

二叉树问题——前/中/后/层遍历问题(递归与栈)

摘要 博文主要介绍二叉树的前/中/后/层遍历(递归与栈)方法 一、前/中/后/层遍历问题 144. 二叉树的前序遍历 145. 二叉树的后序遍历 94. 二叉树的中序遍历 102. 二叉树的层序遍历 103. 二叉树的锯齿形层序遍历 二、二叉树遍历递归解析 // 前序遍历递归LC144_二叉树的前…

springboot+vue基于hive旅游数据的分析与应用【内含源码+文档+部署教程】

博主介绍&#xff1a;✌全网粉丝10W,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久&#xff0c;选择我们就是选择放心、选择安心毕业✌ &#x1f345;由于篇幅限制&#xff0c;想要获取完整文章或者源码&#xff0c;或者代做&am…

LeetCode1518 换水问题

题目描述 超市正在促销&#xff0c;你可以用 numExchange 个空水瓶从超市兑换一瓶水。最开始&#xff0c;你一共购入了 numBottles 瓶水。 如果喝掉了水瓶中的水&#xff0c;那么水瓶就会变成空的。 给你两个整数 numBottles 和 numExchange &#xff0c;返回你 最多 可以喝…

【工具】【IDE】Qt Creator社区版

Qt Creator社区版下载地址&#xff1a;https://download.qt.io/archive/qt/ 参考&#xff1a;https://cloud.tencent.com/developer/article/2084698?areaSource102001.8&traceIduMchNghqp8gWPdFHvSOGg MAC安装并配置Qt&#xff08;超级简单版&#xff09; 1.安装brew&…

使用vue3+vite+elctron构建小项目介绍Electron进程间通信

进程间通信 (IPC) 是在 Electron 中构建功能丰富的桌面应用程序的关键部分之一。 由于主进程和渲染器进程在 Electron 的进程模型具有不同的职责&#xff0c;因此 IPC 是执行许多常见任务的唯一方法&#xff0c;例如从 UI 调用原生 API 或从原生菜单触发 Web 内容的更改。 在 …

分享66个工作总结PPT,总有一款适合您

分享66个工作总结PPT&#xff0c;总有一款适合您 66个工作总结PPT下载链接&#xff1a;https://pan.baidu.com/s/1g8AWl42-tLdFYXEHZUYyGQ?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 立冬PPTPPT模板 西藏信仰PPT模板 古镇丽…

从零开始的目标检测和关键点检测(三):训练一个Glue的RTMPose模型

从零开始的目标检测和关键点检测&#xff08;三&#xff09;&#xff1a;训练一个Glue的RTMPose模型 一、重写config文件二、开始训练三、ncnn部署 从零开始的目标检测和关键点检测&#xff08;一&#xff09;&#xff1a;用labelme标注数据集 从零开始的目标检测和关键点检测…

【LeetCode:2103. 环和杆 | 模拟】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…