基于PyTorch的中文情绪分析器设计与开发

收藏和点赞,您的关注是我创作的动力

文章目录

    • 概要
  • 一、相关基础理论
    • 2.1 主流深度学习框架
    • 2.2 神经网络
    • 2.2.1 神经网络基础
  • 二、中文情感分类模型构建
    • 3.1 开发环境
    • 3.2 数据部分
    • 3.3 文本特征提取
    • 3.3.1、过滤标点符号
    • 3.3.2 中文分词、单词过滤
  • 三 运行结果与分析
  • 五 结 论
    • 目录

概要

    情感分析在最近的十年内得到了快速的发展,这归功于大数据的支持。相较于英语而言,中文的使用同样广泛。如何把握中文里的情感也是服务行业所关注的问题。本文旨在研究中文情绪分析的设计与开发,意在基于Pytorch平台,利用深度学习去构建神经网络模型从而去判断中文文本数据中所蕴含的情绪,试图通过迁移学习的方式,把电影评价数据的模型应用在教育评价的数据上。本文先是通过了对文献的分析,得到了迁移学习的基础,再是通过深度神经网络模型的搭建以及网上电影评价数据来训练,最终得到一个对于电影评价、教育评价都适用的模型。
【关键词】:Pytorch;神经网络;情感分析;迁移学习

一、相关基础理论

  

2.1 主流深度学习框架

Pytorch是Facebook在2017年推出的开源深度学习框架,源于torch更新后的一种新产品。因其是原生的python包,所以它与python是无缝集成的,同样使用了命令式编码风格。其易于上手、入门的缘故,非专业人士同样可以使用该平台来提高工作效率。Pytorch及其扩展函数库构成了一个丰富、完整的神经网络构建、应用平台,开源,免费,学习和使用方便[10]。相较于TensorFlow,Pytorch具有动态计算图表、精简的后端与高度可拓展等优势,深度学习专业人员可以利用该平台进行深度学习领域项目的设计与应用。

2.2 神经网络

2.2.1 神经网络基础

人工神经网络(Artificial Neural Networks),简称为神经网络(NNs)是一种受人脑的生物神经网络启发而设计的计算模型。这种网络基于系统的复杂程序,善于从输入的数据和标签中学习到相关映射关系,从而达成完成预测或者解决分类问题的目的。人工神经网络本质上是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型,用于拟合任意映射,因此也被称为通用拟合器。神经网络的运行包含前馈的预测过程和反馈的学习过程。
  如图2-1所示,在前馈的预测过程中,信号(Inputs)从输入单元输入,并沿着网络连边传输,每个信号会与连边上的权重(Weights)进行乘积,从而得到隐含层单元的输入;接下来,隐含层单元对所有连边输入的信号进行汇总(通过transfer function进行求和),然后经过一定的处理(激活函数)进行输出( );这些输出的信号再乘以从隐含层到输出的那组连线上的权重( ),从而得到输入给输出单元的信号;最后,输出单元再对每一条输入连边的信号进行汇总,并进行加工处理再输出。最后的输出就是整个神经网络的输出。神经网络在训练阶段会通过优化函数调节每条连边上的权重 数值。
  在反馈的学习过程中,每个输出神经元会首先计算出它的预测误差,然后将这个误差沿着网络的所有连边进行反向传播,得到每个隐含层节点的误差。最后,根据每条连边所连通的两个节点的误差计算连边上的权重更新量,从而完成网络的学习与调整。
  在这里插入图片描述

二、中文情感分类模型构建

3.1 开发环境

模型是在系统WIN10、1TB+256G(SSD)、内存16G 、INTEL酷睿I7-7700HQ的CPU以及英伟达GTX1070(8G)显卡的PC机上通过python3.8版本和Anaconda1.9.12版本来使用pytorch构建深度学习模型。Anaconda是一个开源的python包管理器,包含了python、conda等180多个科学包及其依赖项。它支持Windows、Linux和Mac三种系统。由于它提供了包管理与环境管理的功能,能够很方便地解决多版本python切换、并存以及下载安装各种第三方包等问题。使用自带的jupyter notebooks应用程序,可以直接在谷歌网页页面编写、运行和调试代码。
构建神经网络模型中使用到的python模块的功能介绍:
1、Re—python独有的通过正则表达式对字符串匹配操作的模块。
2、Jieba—一款基于python的强大的分词库,完美支持中文分词。
3、Collections—包括了dict、set、list、tuple以外的一些特殊容器类型。
4、Matplotlib—将数据可视化。

3.2 数据部分

本模型中所使用的用于训练模型的数据均来自于网上的开源数据包,其包括了豆瓣在2018年之前约13万部电影数据以及105万条左右的电影评论。其中评论数据中包含评论者的ID、电影的ID、评论内容、点赞次数、评论时间和评论等级。由于文本信息均为不等长的序列,可能会出现内存不足、无法训练模型的情况,因此我们对电影评价数据做以下预处理,过程保证全随机:
  1.抽取5000条评价星级为4~5的评价作为满意度高的评价存放在comment_good.txt文件中。
  2. 抽取5000条评价星级为1~2的评价作为满意度低的评价存放在comment_bad.txt文件中。
3.对comment_good.txt和comment_bad.txt中的文本进行去噪处理。

3.3 文本特征提取

3.3.1、过滤标点符号

通过filter_punc函数对文本的标点符号中进行过滤操作,它通过调用正则表达式的相应程序包,替换掉了所有中英文的标点符号。#将文本中的标点符号过滤掉def filter_punc(sentence): sentence = re.sub( “[\s+.!/_,$%^(+"'“”《》?“]+|[+——!,。?、~@#¥%……&():]+”, “”, sentence)
return(sentence)

3.3.2 中文分词、单词过滤

中文分词是对文本数据分析的一种重要环节,主要的目的是将一个连续的中文句子按照汉语语言的规则组合成分开的词组的过程(脚注)。在python中,通过调用“jieba”模块来对原始文本进行分词。jieba模块拥有一个自带的词典,调用jieba.lcut(x)函数就将x中的字符分成若干个词,并存储在列表all_words[]中。x为一条评论文本数据。由于jieba自带的词典不足以满足我们的需求,因此我们根据已知数据的特性,通过调用Python的字典(diction)来建立自己专用的单词表,其中diction中存储了每个单词作为键(key),一对数字分别表示词的编号以及词在整个语料中出现的次数作为值(value)。存储第一个数值的目的是用数字来替换文字,存储第二个数值的目的是方便查看不同词的频率(TF)。根据公式(2-5)、2(6)统计训练集中评价的条数、以及包含某个特征词的评论条数,用于计算IDF。通过“TF-IDF”指标过滤常见无用词语,保留 重要的词语,从而得到更优质的词袋。

三 运行结果与分析

在这里插入图片描述

图3-3 优化函数SDG、学习率为0.01下的三条曲线分布
  图3-3中蓝色的Train Loss表示训练集上的损失函数,橘色的Valid Loss表示校验集上的损失函数,绿色的Valid Accuracy表示校验集上的分类准确度。可以观察到,随着训练周期的增加,训练数据和校验数据的损失函数曲线并没有发现明显下降趋势,甚至于在第10周期之后训练数据的损失函数一直高于校验数据的损失函数值,且模型准确率一直不超过70%,这说明模型并没有训练成功。将学习率调整为0.001后再次训练模型。
  在这里插入图片描述

图3-4 优化函数SDG、学习率为0.001下的三条曲线分布
  观察图3-4可知,训练数据的损失函数曲线在第一个周期之后与校验数据损失函数曲线持平,也就意味着SGD在学习率为0.001并没有起到做到作用,且模型准确率低达0.53。将学习率调整为0.1后再次训练模型。
在这里插入图片描述

图3-5 优化函数SDG、学习率为0.1下的三条曲线分布
  观察图3-5可知,虽然模型的准确率在稳步上升,但训练数据的损失函数值一直高于校验数据的损失函数值,这说明30步训练并没有成功的训练模型。试着将循环调整为15次后对模型进行训练。
  在这里插入图片描述

图3-6 优化函数SDG、学习率为0.1下的三条曲线分布
  观察图3-6可知,模型准确率一直止步于70%,虽然校验数据的损失函数值一直围绕着训练数据的损失函数进行波动,但是该损失值过大,不足以证明模型被训练好。究其原因,问题可能出现在使用的激活函数为Relu,因为第二章提到的学习率的问题引发了Dead ReLU problem,极大可能由于SGD是固定学习率的缘故。因此我们试着采用之前介绍的学习率不固定的Adam优化算法训练模型,初始设置学习率为0.1。
在这里插入图片描述

图3-7 优化函数Adam、学习率为0.1下的三条曲线分布

五 结 论

   通过利用影视作品的评价数据去训练模型可以得知,对于好作品而言,人们一般不会从电影好的方面去评价一个作品的好坏,更多的是抒发自己看完电影后的感悟,大部分描述的词汇与电影的本身内容没有直接的关联,这也证实了电影评价的数据确实不好用一般的分类模型去分析。此外,模型的精确度还可以通过针对性的对数据清洗来提高。
  另一方面“大数据”与“教育”的相结合可能远远的会比我们现在所搭建的神经网络分类器要复杂的许多,我们的分类器暂时也只能做到对文本情绪的好坏进行分类。在情感领域内,情感的分类远远不是非黑即白这么简单,教育工作者会需要评价文本中蕴含的情感建立更加具有针对性的教育方针的改变,所以我们模型还远远达不到这方面的要求。但现在所搭建的神经网络模型,是更加高级的神经网络(RNN模型或者LSTM模型)的基础。路漫漫其修远兮,拥有扎实的基础理论才有可能再往上继续延伸,这是起点,却不是终点。

目录

目录
1 绪论5
1.1 研究背景5
1.2 国内外研究现状5
1.3 研究问题6
1.4 研究方法与手段7
2 相关基础理论8
2.1 主流深度学习框架8
2.2 神经网络8
2.2.1 神经网络基础8
2.2.2 神经网络的分类任务9
2.2.3 激活函数9
2.2.4 损失函数10
2.2.5 过拟合现象11
2.2.6 泛化能力12
2.2.7 超参数12
2.3 词袋模型12
2.4 词频逆文档频率(TF-IDF)13
3 中文情感分类模型构建13
3.1 开发环境13
3.2 数据部分14
3.3 文本特征提取14
3.3.1 过滤标点符号14
3.3.2 中文分词及单词过滤14
3.3.3 文本数据向量化14
3.3.4 数据划分15
3.4 神经网络的搭建15
3.5 运行结果与分析16
3.6 优化与改进模型20
4 方案拓展以及总结21
4.1 方案拓展21
4.2 方案总结22
参考文献23
致谢24

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/111988.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVA基础(JAVA SE)学习笔记(十)多线程

前言 1. 学习视频: 尚硅谷Java零基础全套视频教程(宋红康2023版,java入门自学必备)_哔哩哔哩_bilibili 2023最新Java学习路线 - 哔哩哔哩 第三阶段:Java高级应用 9.异常处理 10.多线程 11.常用类和基础API 12.集合框架 13.泛型 14…

Android任务栈和启动模式

Andrcid中的任务栈是一种用来存放Activity实倒的容器。任务最大的特点就是先进后出,它主要有两个基本操作,分别是压栈和出栈。通常Andaid应用程序都有一个任务栈,每打开一个Activity时,该Activity就会被压入任务栈。每销毁一个Act…

day02 矩阵 2023.10.26

1.矩阵 2.矩阵乘法 3.特殊矩阵 4.逆矩阵 5.正交矩阵 6.几何意义 7.齐次坐标 8.平移矩阵 9.旋转矩阵 10.缩放矩阵 11.复合运算

linux杀毒软件下载、安装(在线安装、离线安装)

下载 ClamAVNet 离线安装 # 离线安装 rpm -ivh --prefix/usr/local/clamav clamav*linux.x86_64.rpm # 添加用户组和组成员 groupadd clamav useradd -g clamav clamav # 创建日志目录、病毒库目录和套接字目录 mkdir -p /usr/local/clamav/logs mkdir -p /usr/local/clamav/…

Flask Run运行机制剖析

一、前言 已经玩了一段时间Flask ,每次调用app.run(或flask run)就可以启动应用,今天我们就来了解一下run背后究竟做了些什么事情。 注:通过上面几行代码就可以启动一个Flask服务器,打开浏览器输入http://127.0.0.1:5000, 页面上…

【广州华锐互动】飞机诊断AR远程指导系统为工程师提供更多支持

随着科技的发展,飞机的维护工作也在不断进步。其中,AR(增强现实)技术的应用使得远程运维成为可能。本文将探讨AR在飞机诊断远程指导系统中的应用,以及它对未来航空维护模式的影响。 AR远程指导系统是一种使用增强现实技…

taro全局配置页面路由和tabBar页面跳转

有能力可以看官方文档:Taro 文档 页面路由配置,配置在app.config.ts里面的pages里: window用于设置小程序的状态栏、导航条、标题、窗口背景色,其配置项如下: tabBar配置:如果小程序是一个多 tab 应用&…

MSQL系列(十一) Mysql实战-Inner Join算法底层原理及驱动表选择

Mysql实战-Inner Join算法驱动表选择 前面我们讲解了BTree的索引结构,及Mysql的存储引擎MyISAM和InnoDB,也详细讲解下 left Join的底层驱动表 选择, 并且初步了解 Inner join是Mysql 主动选择优化的驱动表,知道索引要建立在被驱动表上 那么对于Inner j…

【java学习—十】操作集合的工具类Collections(8)

文章目录 1. 操作集合的工具类: Collections2. 应用3. 查找、替换3.1. max 与 min3.2. 根据Comparator返回max(min) 3.3. frequency 与 replaceAll4. 同步控制 1. 操作集合的工具类: Collections Collections 是一个操作 Set 、List 和 Map 等集合的工具…

揭示沉浸式展览设计方案中的创新展示技术

随着数字多媒体技术在展览设计方案中的广泛应用,让传统的静态展示方式,走向了更为生动、立体的动态化设计模式,而其中最令人瞩目的当属沉浸式展览展示,它以其独特的展示方式和引人入胜的体验效果,引发了大量的关注和热…

解决找不到msvcr120.dll无法继续执行问题的5个方法,快速解决dll问题

在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是找不到msvcr120.dll的错误。这个错误通常发生在运行某些程序或游戏时,它会导致程序无法正常启动或运行。那么,如何解决找不到msvcr120.dll的问题呢?下面我…

深度学习数据集大合集—疾病、植物、汽车等

最近又收集了一大批深度学习数据集,今天分享给大家!废话不多说,直接上数据! 1、招聘欺诈数据集 招聘欺诈数据集:共收集了 200,000 条数据,来自三个网站。 该数据集共收集了 200.000 条数据,分别…

HackTheBox-Starting Point--Tier 1---Tactics

文章目录 一 题目二 实验过程三 Psexec工具使用 一 题目 Tags Network、Protocols、SMB、Reconnaissance、Misconfiguration译文:网络、协议、中小企业、侦察、配置错误Connect To attack the target machine, you must be on the same network.Connect to the S…

自动化测试实战篇:UI自动化测试用例管理平台搭建

用到的工具:python3 django2 mysql RabbitMQ celery selenium python3和selenium这个网上很多教程,我不在这一一说明; 平台功能介绍: 项目管理:用于管理项目。每个项目可以设置多个环境,例如开发环境…

怎样才知道一个单片机的性能到极限了?

怎样才知道一个单片机的性能到极限了? 就题主的问题,应该是想问CPU利用率的问题。可以看看Rt-thread中关于统计CPU利用率函数,其主要实现方式是在idle线程先关闭中断计数后,正常计数(可被其他线程打断),最近很多小伙伴…

竞赛知识点11【线段树】

文章目录 一、概念二、基本操作2.1、建树2.2、区间询问操作2.3、单点修改2.4、区间修改一、概念 线段树是用一种树状结构来存储一个连续区间的信息的数据结构。 它主要用于处理一段连续区间的插入,查找,统计,查询等操作。 复杂度: 设区间长度是 n n n,所有操作的复杂度是 l…

java修仙基石篇->instanceof子父类检查

instanceof检查子父类(或者是否能被强转) 作用1:检查某对象是否是某类的子类 如:儿子类继承了父亲类。 检查儿子类对象是否属于父亲类 作用2:检查两个对象是否可以强转 语法: 子类对象 instanceof 父…

蚂蚁蚁盾发布实体产业「知识交互建模引擎」,最快10分钟定制AI风控模型

数字化起步晚、数据分散稀疏、专业壁垒高、行业知识依赖「老师傅」,是很多传统产业智能化发展面临的难题。2023年云栖大会上,蚂蚁集团安全科技品牌蚁盾发布“知识交互建模引擎”,将实体产业知识与AI模型有机结合,助力企业最快10分…

【23真题】Top3简单专业课似双非!

今天分享的是23年复旦大学957的信号与系统试题及解析。 本套试卷难度分析:这套卷子平均分为120左右,最高分145分。22年复旦大学957信号与系统,我也发布过,若有需要戳这里自取!本套试题内容难度中等偏下,说…

主播直播美颜SDK:性能优化策略

当下,主播直播美颜SDK成为了越来越多主播的利器。这些SDK可以实时美化主播的外貌,提高视觉吸引力,但同时也需要处理大量的图像数据。因此,性能优化成为了不可或缺的一环。本文将探讨主播直播美颜SDK的性能优化策略,以确…