学习笔记---更进一步的双向链表专题~~


目录

1. 双向链表的结构🦊

2. 实现双向链表🐝

2.1 要实现的目标🎯

2.2 创建+初始化🦋

2.2.1 List.h

2.2.2 List.c

2.2.3 test.c

2.2.4 代码测试运行

2.3 尾插+打印+头插🪼

思路分析

2.3.1 List.h

2.3.2 List.c

2.3.3 test.c

2.3.4 代码测试运行

2.4 尾删+头删🐊

2.4.0 思路分析

2.4.1 List.h

2.4.2 List.c

2.4.3 test.c

2.4.4 代码测试运行

2.5 查找数据+pos节点后插入+删除pos节点🦩

2.5.0 思路分析

2.5.1 List.h

2.5.2 List.c

2.5.3 test.c

2.5.4 代码测试运行

2.6 销毁☄️

2.6.0思路分析

1. 一级指针

2.6.1 List.h

2.6.2 List.c

2.6.3 test.c

2.6.4 代码测试运行

2. 二级指针

2.6.1 List.h

2.6.2 List.c

2.6.3 test.c

2.6.4 代码测试运行

2.7 完整代码💦

2.7.1 List.h

2.7.2 List.c

2.7.3 test.c

3. 顺序表和双向链表的分析🍻


1. 双向链表的结构🦊


这里的双向链表,准确的说是:带头双向循环链表

这里的“头节点”指的是“哨兵位”哨兵位节点不存储任何有效元素,只是站在这⾥“放哨

的”。

“哨兵位”存在的意义:遍历循环链表避免死循环

注意⚠️

双向链表的每一个节点存储一个有效数据+下一个节点的地址+上一个节点的地址

头节点和尾节点有些特殊:头节点指向的上一个节点的地址是尾节点,尾节点指向的下一个节点的地址是头节点


2. 实现双向链表🐝

2.1 要实现的目标🎯

我们需要多个接口帮助我们实现:创建、一系列具体操作、销毁

具体操作包括:头部/尾部插入数据、头部/尾部删除数据、打印出双向链表、指定节点之后插入数据、删除指定节点的数据、查找指定节点

2.2 创建+初始化🦋

2.2.1 List.h

#include<assert.h>
#include<string.h>
#include<stdbool.h>

typedef int LTDataType;
//创建双向链表的结构体
typedef struct ListNode {
	LTDataType data;
	struct ListNode* prev;
	struct ListNode* next;
}ListNode;

//初始化
ListNode* LTInit();//不用传入参数,直接调用接口返回一个头节点

2.2.2 List.c

#include"List.h"
//初始化
ListNode* LTInit()//不用传入参数,直接调用接口返回一个头节点
{
	//为头节点申请空间
	ListNode* phead = (ListNode*)malloc(sizeof(ListNode));
	//判断开辟是否成功
	if (phead == NULL)
	{
		perror("malloc error!\n");
		return;
	}
	//开辟成功--->初始化头节点
	phead->data = -1;//头节点不存储有效数据,可以任意赋值
	//只有哨兵位的时候,要实现双向链表,不能指向NULL,否则无法双向循环,所以我们指向自己
	phead->prev = phead->next = phead;
	return phead;
}

2.2.3 test.c

#include"List.h"
void ListTest()
{
	ListNode* plist = LTInit();
}
int main()
{
	ListTest();
	return 0;
}

2.2.4 代码测试运行


2.3 尾插+打印+头插🪼

思路分析




2.3.1 List.h

//在双向链表中不会改变哨兵位,所以这里都可以传一级指针
//尾插
void LTPushBack(ListNode* phead, LTDataType x);

//打印
void LTPrint(ListNode* phead);

//头插
void LTPushFront(ListNode* phead, LTDataType x);

2.3.2 List.c

//在双向链表中不会改变哨兵位,所以这里都可以传一级指针
// 只改变数据,不改变地址

//开辟空间
ListNode* ListBuyNode(LTDataType x)
{
	ListNode* node = (ListNode*)malloc(sizeof(ListNode));
	if (node == NULL)
	{
		perror("malloc error!\n");
		return;
	}
	node->data = x;
	node->next = node->prev = NULL;
	return node;
}

//尾插
void LTPushBack(ListNode* phead, LTDataType x)
{
	assert(phead);//注意哨兵位不能为空
	//申请空间
	ListNode* node = ListBuyNode(x);
	//先处理node的前驱指针和后继指针
	node->prev = phead->prev;
	node->next = phead;
	//再处理之前的尾节点和phead
	phead->prev->next = node;
	phead->prev = node;
}

//打印
void LTPrint(ListNode* phead)
{
	//哨兵位不能改变
	ListNode* cur = phead->next;
	while (cur != phead)//当cur再次指向phead的时候,循环结束
	{
		printf("%d->", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

//头插
void LTPushFront(ListNode* phead, LTDataType x)
{
	assert(phead);//注意哨兵位不能为空
	//申请空间
	ListNode* node = ListBuyNode(x);
	//node插入头节点之后才算头插
	//先处理node的前驱指针和后继指针
	node->prev = phead;
	node->next = phead->next;
	//再处理phead和phead->next
	phead->next->prev = node;
	phead->next = node;
}

2.3.3 test.c

#include"List.h"
void ListTest()
{
	ListNode* plist = LTInit();
	LTPushBack(plist, 1);
	LTPushBack(plist, 2);
	LTPushBack(plist, 3);
	LTPushBack(plist, 4);
	LTPrint(plist);//1 2 3 4 
	LTPushFront(plist, 5);
	LTPrint(plist);//5 1 2 3 4 
}
int main()
{
	ListTest();
	return 0;
}

2.3.4 代码测试运行


2.4 尾删+头删🐊

2.4.0 思路分析



2.4.1 List.h

//尾删
void LTPopBack(ListNode* phead);

//头删
void LTPopFront(ListNode* phead);

2.4.2 List.c

//尾删
void LTPopBack(ListNode* phead)
{
	//不能为空链表,只有一个哨兵位不能尾删
	assert(phead&&(phead->prev!=phead||phead->next!=phead));
	ListNode* del = phead->prev;//phead->prev就是尾节点
	//先处理del
	del->prev->next = phead;
	//再处理phead
	phead->prev = del->prev;
	free(del);
	del = NULL;
}

//头删
void LTPopFront(ListNode* phead)
{
	//不能为空链表,只有一个哨兵位不能头删
	assert(phead && (phead->prev != phead || phead->next != phead));
	ListNode* del = phead->next;
	del->next->prev = phead;
	phead->next = del->next;
	free(del);
	del = NULL;
}

2.4.3 test.c

#include"List.h"
void ListTest()
{
	ListNode* plist = LTInit();
	LTPushBack(plist, 1);
	LTPushBack(plist, 2);
	LTPushBack(plist, 3);
	LTPushBack(plist, 4);
	LTPrint(plist);//1 2 3 4 
	LTPushFront(plist, 5);
	LTPrint(plist);//5 1 2 3 4 
	LTPopBack(plist);
	LTPrint(plist);//5 1 2 3
	LTPopFront(plist);
	LTPrint(plist);//1 2 3
}
int main()
{
	ListTest();
	return 0;
}

2.4.4 代码测试运行


2.5 查找数据+pos节点后插入+删除pos节点🦩

2.5.0 思路分析



2.5.1 List.h

//查找数据
ListNode* LTFind(ListNode* phead, LTDataType x);

//pos节点之后插入
void LTPushAfter(ListNode* pos, LTDataType x);

//删除pos节点
void LTErase(ListNode* pos);

2.5.2 List.c

//查找数据
ListNode* LTFind(ListNode* phead, LTDataType x)
{
	assert(phead);
	ListNode* cur = phead->next;
	while (cur!= phead)
	{
		if (cur->data == x)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

//pos节点之后插入
void LTPushAfter(ListNode* pos, LTDataType x)
{
	assert(pos);
	ListNode* node = ListBuyNode(x);
	//node
	node->next = pos->next;
	node->prev = pos;
	//pos
	pos->next = node;
	node->next->prev = node;
}

//删除pos节点
void LTErase(ListNode* pos)
{
	assert(pos);
	pos->prev->next = pos->next;
	pos->next->prev = pos->prev;
	free(pos);
	pos = NULL;
}

2.5.3 test.c

#include"List.h"
void ListTest()
{
	ListNode* plist = LTInit();
	LTPushBack(plist, 1);
	LTPushBack(plist, 2);
	LTPushBack(plist, 3);
	LTPushBack(plist, 4);
	LTPrint(plist);//1 2 3 4 
	LTPushFront(plist, 5);
	LTPrint(plist);//5 1 2 3 4 
	LTPopBack(plist);
	LTPrint(plist);//5 1 2 3
	LTPopFront(plist);
	LTPrint(plist);//1 2 3
	ListNode* find = LTFind(plist, 1);
	/*LTPushAfter(find, 4);*/	
	//LTPrint(plist);//1 4 2 3
	LTErase(find);
	LTPrint(plist);//2 3

}
int main()
{
	ListTest();
	return 0;
}

2.5.4 代码测试运行



2.6 销毁☄️

2.6.0思路分析

一开始的初始化,我们直接调用了接口,返回头节点进行初始化。我们没有考虑一级指针还是二级指针的问题。

那么,最后的销毁又该怎么办?是一级指针?还是二级指针?下面我们一一来尝试

1. 一级指针

2.6.1 List.h
//销毁
void LTDestroy(ListNode* phead);

2.6.2 List.c
//销毁
void LTDestroy(ListNode* phead)
{
	assert(phead);
	ListNode* cur = phead->next;
	while(cur!=phead)
	{
		ListNode* next = cur->next;
		free(cur);
		cur = next;
	}
	//注意哨兵位还没有释放
	free(phead);
	phead = NULL;
}

2.6.3 test.c
#include"List.h"
void ListTest()
{
	ListNode* plist = LTInit();
	LTPushBack(plist, 1);
	LTPushBack(plist, 2);
	LTPushBack(plist, 3);
	LTPushBack(plist, 4);
	LTPrint(plist);//1 2 3 4 
	//LTPushFront(plist, 5);
	//LTPrint(plist);//5 1 2 3 4 
	//LTPopBack(plist);
	//LTPrint(plist);//5 1 2 3
	//LTPopFront(plist);
	//LTPrint(plist);//1 2 3
	//ListNode* find = LTFind(plist, 1);
	/*LTPushAfter(find, 4);*/	
	LTPrint(plist);//1 4 2 3
	//LTErase(find);
	//LTPrint(plist);//2 3
	LTDestroy(plist);

}
int main()
{
	ListTest();
	return 0;
}

2.6.4 代码测试运行


一级指针:
phead的改变不影响plist,phead释放之后,plist指向已经释放掉的空间——>把plist置为空

那么置为空之前,还要不要将plist指向的空间再free一次?

我们尝试一下

那么再思考一下:一级指针是会导致phead的改变不影响plist,那么plist是什么没有改变?是指plist保存的值没有被改变还是plist的这块空间的地址没有被释放?




这里报错指的是plist指向无效地址

注意⚠️
如果plist的地址没有被释放,那么直接free(plist)是不会报错的

所以在一级指针的情况下:plist的地址已经被释放了,没有被置为空的可以理解是plist的地址名称

2.6.5 一级指针的改进---test.c


2. 二级指针

2.6.1 List.h
//销毁
//void LTDestroy(ListNode* phead);
void LTDestroy(ListNode** phead);

2.6.2 List.c
//销毁
void LTDestroy(ListNode** phead)
{
	assert(phead && *phead);
	ListNode* cur = (*phead)->next;
	while (cur != *phead)
	{
		ListNode* next = cur->next;
		free(cur);
		cur = next;
	}
	free(*phead);
	*phead = NULL;
}

2.6.3 test.c
#include"List.h"
void ListTest()
{
	ListNode* plist = LTInit();
	LTPushBack(plist, 1);
	LTPushBack(plist, 2);
	LTPushBack(plist, 3);
	LTPushBack(plist, 4);
	LTPrint(plist);//1 2 3 4 
	//LTPushFront(plist, 5);
	//LTPrint(plist);//5 1 2 3 4 
	//LTPopBack(plist);
	//LTPrint(plist);//5 1 2 3
	//LTPopFront(plist);
	//LTPrint(plist);//1 2 3
	//ListNode* find = LTFind(plist, 1);
	///*LTPushAfter(find, 4);*/	
	LTPrint(plist);//1 4 2 3
	//LTErase(find);
	//LTPrint(plist);//2 3
	//LTDestroy(plist);
	//plist = NULL;
	LTDestroy(&plist);
}
int main()
{
	ListTest();
	return 0;
}

2.6.4 代码测试运行


虽然,二级指针不用手动将plist置为空
但是,更推荐一级指针,因为其他接口基本上都是一级指针——>保持接口的一致性


2.7 完整代码💦

2.7.1 List.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<string.h>
#include<stdbool.h>

typedef int LTDataType;
//创建双向链表的结构体
typedef struct ListNode {
	LTDataType data;
	struct ListNode* prev;
	struct ListNode* next;
}ListNode;

//初始化
ListNode* LTInit();//不用传入参数,直接调用接口返回一个头节点

//在双向链表中不会改变哨兵位,所以这里都可以传一级指针
//尾插
void LTPushBack(ListNode* phead, LTDataType x);

//打印
void LTPrint(ListNode* phead);

//头插
void LTPushFront(ListNode* phead, LTDataType x);

//尾删
void LTPopBack(ListNode* phead);

//头删
void LTPopFront(ListNode* phead);

//查找数据
ListNode* LTFind(ListNode* phead, LTDataType x);

//pos节点之后插入
void LTPushAfter(ListNode* pos, LTDataType x);

//删除pos节点
void LTErase(ListNode* pos);

//销毁
void LTDestroy(ListNode* phead);

2.7.2 List.c

#include"List.h"
//初始化
ListNode* LTInit()//不用传入参数,直接调用接口返回一个头节点
{
	//为头节点申请空间
	ListNode* phead = (ListNode*)malloc(sizeof(ListNode));
	//判断开辟是否成功
	if (phead == NULL)
	{
		perror("malloc error!\n");
		return;
	}
	//开辟成功--->初始化头节点
	phead->data = -1;//头节点不存储有效数据,可以任意赋值
	//只有哨兵位的时候,要实现双向链表,不能指向NULL,否则无法双向循环,所以我们指向自己
	phead->prev = phead->next = phead;
	return phead;
}

//在双向链表中不会改变哨兵位,所以这里都可以传一级指针
// 只改变数据,不改变地址

//开辟空间
ListNode* ListBuyNode(LTDataType x)
{
	ListNode* node = (ListNode*)malloc(sizeof(ListNode));
	if (node == NULL)
	{
		perror("malloc error!\n");
		return;
	}
	node->data = x;
	node->next = node->prev = NULL;
	return node;
}

//尾插
void LTPushBack(ListNode* phead, LTDataType x)
{
	assert(phead);//注意哨兵位不能为空
	//申请空间
	ListNode* node = ListBuyNode(x);
	//先处理node的前驱指针和后继指针
	node->prev = phead->prev;
	node->next = phead;
	//再处理之前的尾节点和phead
	phead->prev->next = node;
	phead->prev = node;
}

//打印
void LTPrint(ListNode* phead)
{
	//哨兵位不能改变
	ListNode* cur = phead->next;
	while (cur != phead)//当cur再次指向phead的时候,循环结束
	{
		printf("%d->", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

//头插
void LTPushFront(ListNode* phead, LTDataType x)
{
	assert(phead);//注意哨兵位不能为空
	//申请空间
	ListNode* node = ListBuyNode(x);
	//node插入头节点之后才算头插
	//先处理node的前驱指针和后继指针
	node->prev = phead;
	node->next = phead->next;
	//再处理phead和phead->next
	phead->next->prev = node;
	phead->next = node;
}

//尾删
void LTPopBack(ListNode* phead)
{
	//不能为空链表,只有一个哨兵位不能尾删
	assert(phead&&(phead->prev!=phead||phead->next!=phead));
	ListNode* del = phead->prev;//phead->prev就是尾节点
	//先处理del
	del->prev->next = phead;
	//再处理phead
	phead->prev = del->prev;
	free(del);
	del = NULL;
}

//头删
void LTPopFront(ListNode* phead)
{
	//不能为空链表,只有一个哨兵位不能头删
	assert(phead && (phead->prev != phead || phead->next != phead));
	ListNode* del = phead->next;
	del->next->prev = phead;
	phead->next = del->next;
	free(del);
	del = NULL;
}

//查找数据
ListNode* LTFind(ListNode* phead, LTDataType x)
{
	assert(phead);
	ListNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data == x)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

//pos节点之后插入
void LTPushAfter(ListNode* pos, LTDataType x)
{
	assert(pos);
	ListNode* node = ListBuyNode(x);
	//node
	node->next = pos->next;
	node->prev = pos;
	//pos
	pos->next = node;
	node->next->prev = node;
}

//删除pos节点
void LTErase(ListNode* pos)
{
	assert(pos);
	pos->prev->next = pos->next;
	pos->next->prev = pos->prev;
	free(pos);
	pos = NULL;
}

//销毁
void LTDestroy(ListNode* phead)
{
	assert(phead);
	ListNode* cur = phead->next;
	while(cur!=phead)
	{
		ListNode* next = cur->next;
		free(cur);
		cur = next;
	}
	//注意哨兵位还没有释放
	free(phead);
	phead = NULL;
}

2.7.3 test.c

#include"List.h"
void ListTest()
{
	ListNode* plist = LTInit();
	LTPushBack(plist, 1);
	LTPushBack(plist, 2);
	LTPushBack(plist, 3);
	LTPushBack(plist, 4);
	LTPrint(plist);//1 2 3 4 
	LTPushFront(plist, 5);
	LTPrint(plist);//5 1 2 3 4 
	LTPopBack(plist);
	LTPrint(plist);//5 1 2 3
	LTPopFront(plist);
	LTPrint(plist);//1 2 3
	ListNode* find = LTFind(plist, 1);
	/*LTPushAfter(find, 4);*/	
	//LTPrint(plist);//1 4 2 3
	LTErase(find);
	LTPrint(plist);//2 3
	LTDestroy(plist);
	plist = NULL;
}
int main()
{
	ListTest();
	return 0;
}

3. 顺序表和双向链表的分析🍻

不同点顺序表链表(单链表)
存储空间上物理上一定连续逻辑上连续,但物理上不一定连续
随机访问支持O(1)不支持:O(N)
任意位置插入或者删除元素看你需要搬移元素,效率低O(N)只需要改变指针指向
插入动态顺序表,空间不够的时候需要扩容没有容量的概念
应用场景元素高效存储+频繁访问任意位置插入和删除频繁

本次的分享到这里就结束了!!!

PS:小江目前只是个新手小白。欢迎大家在评论区讨论哦!有问题也可以讨论的!

如果对你有帮助的话,记得点赞👍+收藏⭐️+关注➕

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/111227.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

企业电子招标采购系统源码Spring Boot + Mybatis + Redis + Layui + 前后端分离 构建企业电子招采平台之立项流程图

项目说明 随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大&#xff0c;公司对内部招采管理的提升提出了更高的要求。在企业里建立一个公平、公开、公正的采购环境&#xff0c;最大限度控制采购成本至关重要。符合国家电子招投标法律法规及相关规范&#xff0c;以及审…

Ceph入门到精通-bluestore IO流程及导入导出

bluestore 直接管理裸设备&#xff0c;实现在用户态下使用linux aio直接对裸设备进行I/O操作 写IO流程&#xff1a; 一个I/O在bluestore里经历了多个线程和队列才最终完成&#xff0c;对于非WAL的写&#xff0c;比如对齐写、写到新的blob里等&#xff0c;I/O先写到块设备上&am…

0003net程序设计-net旅游景点推荐系统

文章目录 摘 要目录系统设计开发环境 摘 要 随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#…

多模态 多引擎 超融合 新生态!2023亚信科技AntDB数据库8.0产品发布

9月20日&#xff0c;以“多模态 多引擎 超融合 新生态”为主题的亚信科技AntDB数据库8.0产品发布会成功举办&#xff0c;从技术和生态两个角度全方位展示了AntDB数据库第8次大型能力升级和生态建设成果。浙江移动、用友、麒麟软件、华录高诚、金云智联等行业伙伴及业界专家共同…

Goland连接服务器/虚拟机远程编译开发

创建SSH连接 SSH用于与远程服务器建立连接 Settings -> Tools -> SSH Configurations 添加新的ssh连接&#xff0c;Host为ip地址&#xff0c;Username为用户名&#xff0c;认证方式这里选择密码验证 全部填完后可以点击Test Connection测试连接是否成功 创建Deployment…

nginx 转发数据流文件

1.问题描述 后端服务&#xff0c;从数据库中查询日志&#xff0c;并生成表格文件返回静态文件。当数据量几兆时&#xff0c;返回正常&#xff0c;但是超过几十兆&#xff0c;几百兆&#xff0c;就会超过网关的连接超时时间30秒。 时序图 这里面主要花费时间的地方在&#xff…

SPSS单样本t检验

前言&#xff1a; 本专栏参考教材为《SPSS22.0从入门到精通》&#xff0c;由于软件版本原因&#xff0c;部分内容有所改变&#xff0c;为适应软件版本的变化&#xff0c;特此创作此专栏便于大家学习。本专栏使用软件为&#xff1a;SPSS25.0 本专栏所有的数据文件请点击此链接下…

在excel中如何打出上标、下标

例如&#xff0c;想把A2的2变为下标。 在单元中输入内容&#xff1a; 选中2&#xff1a; 右键单击&#xff0c;然后点击“设置单元格格式”&#xff1a; 在特殊效果的下面勾选“下标”&#xff0c;然后点击下面的“确定”按钮&#xff1a; 就将2变为下标了&#xff1a;…

线扫相机DALSA--采集卡Base模式设置

采集卡默认加载“1 X Full Camera Link”固件&#xff0c;Base模式首先要将固件更新为“2 X Base Camera Link”。 右键SCI图标&#xff0c;选择“打开文件所在的位置”&#xff0c;找到并打开SciDalsaConfig的Demo&#xff0c;如上图所示&#xff1a; 左键单击“获取相机”&a…

【错误解决方案】ModuleNotFoundError: No module named ‘xgboost‘

1. 错误提示 在尝试导入名为xgboost的模块时出现了ModuleNotFoundError。 错误提示&#xff1a;ModuleNotFoundError: No module named xgboost 这个错误通常意味着Python环境中没有安装你试图导入的模块。 2. 解决方案 安装xgboost模块即可解决上述问题。 可以通过Python…

对于SOCKET套接字问题的若干认识

1. 首先大家应该知道Socket 编程吧 Socket套接字 分为 应用层套接字 数据链路层套接字&#xff08;也就是原始socket&#xff09; 1.流套接字(SOCK_STREAM) 流套接字用于提供面向连接、可靠的数据传输服务。该服务将保证数据能够实现无差错、无重复送&#xff0c;并按顺序接…

智能运维第一步:HDD磁盘故障预测

当今数字化时代&#xff0c;信息技术扮演着企业和组织运营的关键角色。然而&#xff0c;随着IT环境不断复杂化和数据量激增&#xff0c;传统的运维管理方法已经无法满足日益增长的需求。为应对这一挑战&#xff0c;智能运维&#xff08;Artificial intelligence for IT operati…

【Linux】常见指令以及具体其使用场景

君兮_的个人主页 即使走的再远&#xff0c;也勿忘启程时的初心 C/C 游戏开发 Hello,米娜桑们&#xff0c;这里是君兮_&#xff0c;随着博主的学习&#xff0c;博主掌握的技能也越来越多&#xff0c;今天又根据最近的学习开设一个新的专栏——Linux&#xff0c;相信Linux操作系…

Redis代替session实现用户验证

一、Redis代替session实现用户验证。 下图是session的实现登录需要实现的代码模块&#xff0c;虽然可以实现完整功能&#xff0c;但是仍然存在一些问题。 在以往使用session当作用户验证的过程中&#xff0c;会有session共享的问题&#xff0c;每次承担请求的tomcat是不一样…

okhttp post请求 header post参数加密遇到的两个问题

如果你对于网络请求用了https后是否还有必要对参数加密有疑问可以看我上篇的文章&#xff1a;网络安全https 记得耐心看完&#xff0c;下面说问题&#xff1a; Caused by: java.lang.IllegalArgumentException: Unexpected char 0x0a 一开始以为是okhttp框架对特殊字符做了现在…

Python小试牛刀:GUI(图形界面)实现计算器界面

Python GUI 是指 Python 图形用户界面库&#xff0c;它们可以帮助开发者创建在计算机上运行的图形用户界面&#xff08;GUI&#xff09;。下面是一些常用的 Python GUI 库&#xff1a; Tkinter&#xff1a; Tkinter 是 Python 的标准 GUI 库&#xff0c;它是一个开源的、跨平台…

【C++】多态 ⑧ ( 验证指向 虚函数表 的 vptr 指针 | 对比定义了虚函数的类和没有定义虚函数类的大小 )

文章目录 一、验证指向 虚函数表 的 vptr 指针 是否存在1、虚函数表与 vptr 指针由来2、虚函数类与普通函数类对比 - 多出了 vptr 指针的大小 对比 定义了 虚函数 的类 与 没有定义虚函数的类 的大小 , 其它成员都相同 , 定义了虚函数的类多出了 4 字节 , 多出的 4 字节就是 vp…

Windows11无法打开Photoshop CC 2017问题解决

情况描述&#xff1a; Windows11上&#xff0c;双击Photoshop CC 2017没反应 解决办法&#xff1a; 此时需要启动Windows的“事件查看器”来确认问题出在哪里。可以直接通过开始菜单搜索启动&#xff0c;也可以通过右键点击“此电脑”->“管理”&#xff0c;然后找到事件查…

《微聊》JMeter性能测试报告

文章目录 准备工作JMeter准备工作本地配置代理 测试规划测试方向预期方向异常处理 压力测试录制注册功能压力注册功能压力脚本录制录制功能压力测试脚本完善注册功能压力测试结果 登录功能压力录制登录功能压力测试脚本构造压力测试数据完善登录功能性能测试脚本登录功能压力测…

Servlet的继承树,生命周期和线程不安全

1、Servlet 继承树 3)Servlet的继承树 - Servlet接口public interface Servlet{public void init(config);public void service(request,response);public void destroy();} - GenericServlet抽象类public abstract class GenericServlet implements Servlet{实现了init方法和d…