文章目录
- question
- 5.1 Geographic Encoder
- 5.1.1 Encoding
- 5.1.2
question
给定query,如何选取周边n个地理实体。(按照距离远近)
训练过程如何进行。
5.1 Geographic Encoder
如果没有 GC,仅有地理定位是毫无意义的。地理编码器将地理位置 l 作为输入,将 GC 作为一种新的模态映射到密集表征中,其中包含周围地理对象的特征 {o1, o2, ., on }。
5.1.1 Encoding
地理编码器可提取查询/POI 地理定位(点)与其周围地理对象(线或多边形)之间的相关性。地理编码器分别将地理对象的固有特征(即 ID、形状和地图位置)、关系(即 NEAR 或 COV ERED)和相对位置表示为嵌入。
ID.为了提取地理对象的内在特征,OSM ID 被映射到嵌入式中,其方式与单词嵌入式类似。oi 的 ID 嵌入表示为 ed i。
shape.使用独热函数将分类形状类型 osi 编码为数字数组,并获得其相应的嵌入信息 es i。形状类型嵌入表示为 es i。
地图位置。oi 在地图 em i 中的绝对位置是将其与其他地理物体区分开来的关键。以矩形为单位的整个地图区域被分割成 N × N 的网格,从而分别获得经度和纬度的比例因子 slng 和 slat:
ed是地理对象的唯一标识符,es区分道路和ROI,em描述不同地理对象之间的位置关系。另外两个分量(et 和 ep)描述了地理定位与地理对象之间的相关性。将周围的地理对象编码为一个序列 {e1, ., em } 后,地理编码器采用多层双向变换器 [33] 来学习它们之间的相互作用。根据之前的工作[31],地理编码器会像 CLS 编码器一样在开头预置一个 GC 标记。因此,地理编码器的输出表示为 {hGC, h1, ., hm }。
5.1.2
我们设计了两个任务来训练地理编码器,并在以后的使用中固定下来,即屏蔽地理建模(MGM)和地理对比学习(GCL)。
MGM与广泛使用的掩码语言建模(MLM)[5]一样,MGM 的目的是预测掩码地理特征,即 OSM ID、几何类型、替代矩形的各边、关系类型和相对位置。MGM 损失 LMGM 由所有特征的屏蔽损失相加计算得出。
GCL。这项任务与大小为 bs 的批次中的多个地理位置 {l pq 1 ,…,l pq bs } 有关。我们首先定义现实世界中的地理距离矩阵 H∈Rbs×bs 如下: