[Linux]线程池

[Linux]线程池

文章目录

  • [Linux]线程池
    • 线程池的概念
    • 线程池的优点
    • 线程池的应用场景
    • 线程池的实现

线程池的概念

线程池是一种线程使用模式。线程池是一种特殊的生产消费模型,用户作为生产者,线程池作为消费者和缓冲区。

线程过多会带来调度开销,进而影响缓存局部和整体性能,而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。

线程池的优点

  • 线程池避免了在处理短时间任务时创建与销毁线程的代价。
  • 线程池不仅能够保证内核充分利用,还能防止过分调度。

注意: 线程池中可用线程的数量应该取决于可用的并发处理器、处理器内核、内存、网络sockets等的数量。

线程池的应用场景

  1. 需要大量的线程来完成任务,且完成任务的时间比较短。
  2. 对性能要求苛刻的应用,比如要求服务器迅速响应客户请求。
  3. 接受突发性的大量请求,但不至于使服务器因此产生大量线程的应用。

线程池的实现

下面我们实现一个简单的线程池,线程池中提供了一个任务队列,以及若干个线程(多线程)。

image-20231029145843142

  • 线程池中的多个线程负责从任务队列当中拿任务,并将拿到的任务进行处理。
  • 线程池对外提供一个Push接口,用于让外部线程能够将任务Push到任务队列当中。

线程池的代码如下:

#pragma once

#include <iostream>
#include <unistd.h>
#include <pthread.h>
#include <vector>
#include <queue>

const int N = 5; // 线程池内线程数量

template <class T>
class ThreadPool
{
public:
    ThreadPool(int num = N) : _num(num)
    {
        pthread_mutex_init(&_mutex, nullptr);
        pthread_cond_init(&_cond, nullptr);
    }

    void LockQueue()
    {
        pthread_mutex_lock(&_mutex);
    }

    void UnLockQueue()
    {
        pthread_mutex_unlock(&_mutex);
    }

    void threadWait()
    {
        pthread_cond_wait(&_cond, &_mutex);
    }

    void threadWakeUP()
    {
        pthread_cond_signal(&_cond);
    }

    T getTask()
    {
        T t = _tasks.front();
        _tasks.pop();
        return t;
    }

    bool isEmpty()
    {
        return _tasks.empty();
    }

    static void *threadRoutine(void *args)
    {
        pthread_detach(pthread_self());

        ThreadPool<T> *tp = static_cast<ThreadPool<T> *>(args);
        while (true)
        {
            tp->LockQueue();
            while (tp->isEmpty())
            {
                tp->threadWait();
            }
            T t = tp->getTask();
            tp->UnLockQueue();
            t.Run();//任务处理
        }
    }

    void Start()
    {
        pthread_t tid;
        for (int i = 0; i < _num; i++)
        {
            pthread_create(&tid, nullptr, threadRoutine, this);
        }
    }

    void PushTask(T &task) // 添加任务
    {
        LockQueue();
        _tasks.push(task);
        threadWakeUP();
        UnLockQueue();
    }

    ~ThreadPool()
    {
        pthread_mutex_destroy(&_mutex);
        pthread_cond_destroy(&_cond);
    }

private:
    int _num;                        // 线程数
    std::queue<T> _tasks;            // 任务队列

    pthread_mutex_t _mutex; // 保证互斥访问任务队列这一共享资源
    pthread_cond_t _cond;   // 根据任务队列中的任务数量控制线程的等待和运行
};

为什么线程池中需要有互斥锁和条件变量?

互斥锁: 任务队列是一个共享资源,外部线程可以调用添加任务的接口访问任务队列,线程池内部的线程可以直接访问任务队列处理任务,可能会造成任务队列的并发访问问题,因此需要利用互斥锁保护任务队列中的数据。

条件变量: 线程池当中的线程要从任务队列里拿任务,前提条件是任务队列中必须要有任务,因此线程池当中的线程在拿任务之前,需要先判断任务队列当中是否有任务,若此时任务队列为空,那么该线程应该进行等待,直到任务队列中有任务时再将其唤醒,因此我们需要引入条件变量。

当外部线程向任务队列中Push一个任务后,此时可能有线程正处于等待状态,因此在新增任务后需要唤醒在条件变量下等待的线程。

为什么线程池中的线程执行例程需要设置为静态方法?

使用pthread_create函数创建线程时,需要为创建的线程传入一个执行方法threadRoutine,该执行方法只有一个参数类型为void的参数,以及返回类型为void的返回值。

如果threadRoutine作为类的成员函数,该函数的第一个参数是隐藏的this指针,无法通过编译。而静态成员函数属于类,而不属于某个对象,也就是说静态成员函数是没有隐藏的this指针的,因此我们需要将threadRoutine设置为静态方法,此时threadRoutine函数才真正只有一个参数类型为void的参数。

但是在静态成员函数内部无法调用非静态成员函数,而我们需要在threadRoutine函数当中调用该类的某些非静态成员函数。因此我们需要在创建线程时,向threadRoutine函数传入的当前对象的this指针,此时我们就能够通过该this指针在threadRoutine函数内部调用非静态成员函数了。

任务类型的设计

由于线程池编写的是模板化的,因此任务类型可以是任意的,但是由于处理任务的逻辑是通过调用任务的Run函数,因此任务类中必须实现Run函数才能使用该线程池。

例如,实现一个计算任务类如下:

#include <cstdlib>
#include <iostream>

class Task
{
public:
    Task(int x, int y, char op) : _x(x), _y(y), _op(op), _result(0), _exitcode(0)
    {}

    void Run()//对传入数据进行操作
    {
        switch (_op)
        {
        case '+':
            _result = _x + _y;
            break;
        case '-':
            _result = _x - _y;
            break;
        case '*':
            _result = _x * _y;
            break;
        case '/':
            if (_y == 0) _exitcode = -1;
            else
                _result = _x / _y;
            break;
        case '%':
            if (_y == 0) _exitcode = -2;
            else
                _result = _x % _y;
            break;
        default:
            break;
        }
        std::string result = std::to_string(_x) + _op +  std::to_string(_y) + "=" + std::to_string(_result) + "(exicode:" + std::to_string(_exitcode);
        std::cout << result << std::endl;
    }

private:
    int _x;//左操作数
    int _y;//右操作数
    char _op;//操作符
    int _result;//算数结果
    int _exitcode;//退出码
};

线程池内的线程在从任务队列拿出任务进行处理的过程,并不需要关心这些任务的类型和来源,只需要拿到任务后执行对应的Run方法即可。

主线程实现

主线程只需要不断向任务队列当中Push任务就行了,此后线程池当中的线程会从任务队列当中获取到这些任务并进行处理。

#include "ThreadPoolv1.hpp"
#include "Task.hpp"
#include <memory>
#include <ctime>

using namespace std;

int main()
{
    std::unique_ptr<ThreadPool<Task>> tp(new ThreadPool<Task>());
    tp->Start();
    time(nullptr);
    const char* ops = "+-*/%";
    while(true)
    {
        int x, y;
        x = rand() % 50;
        y = rand() % 50;
        char op = ops[rand()%5];
        Task t(x, y, op);
        tp->PushTask(t);
        sleep(1);
    }
    return 0;
}

运行代码后会产生六个线程,其中一个是主线程,另外五个是线程池内处理任务的线程:

image-20231029152724549

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/110647.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ElasticSearch深度解析入门篇:高效搜索解决方案的介绍与实战案例讲解,带你避坑

ElasticSearch深度解析入门篇&#xff1a;高效搜索解决方案的介绍与实战案例讲解&#xff0c;带你避坑 1.Elasticsearch 产生背景 大规模数据如何检索 如&#xff1a;当系统数据量上了 10 亿、100 亿条的时候&#xff0c;我们在做系统架构的时候通常会从以下角度去考虑问题&a…

Android问题笔记四十三:JNI 开发如何快速定位崩溃问题

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&…

【c++|opencv】二、灰度变换和空间滤波---2.直方图和均衡化

every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?typeblog 0. 前言 图像直方图、直方图均衡化 1. 图像直方图 #include <iostream> #include <opencv2/opencv.hpp>using namespace cv; using namespace std;…

Django之登录注册

最近在准备上线一个网站&#xff08;基于django的编程技术学习与外包服务网站&#xff09;&#xff0c;所以会将自己的在做这个项目的过程中遇到的模块业务以及所涉及到的部分技术记录在CSDN平台里&#xff0c;一是希望可以帮到有需要的同学&#xff0c;二十以供自己后续回顾学…

玩转ChatGPT:批量下载Alphafold的蛋白pdb文件

一、写在前面 突发奇想&#xff0c;想批量下载Alphafold网站的蛋白pdb文件&#xff0c;后续再做个分子对接用。又不想手动下载&#xff0c;来求助CSDN和GPT。 二、CSDN白嫖基础代码 CSDN大神多&#xff0c;这不&#xff0c;找到一个&#xff1a;Alphafold批量下载蛋白的pdb文…

Flutter PopupMenuButton下拉菜单

下拉菜单是移动应用交互中一种常见的交互方式,可以使用下拉列表来展示多个内容标签,实现页面引导的作用。在Flutter开发中,实现下拉弹框主要有两种方式,一种是继承Dialog组件使用自定义布局的方式实现,另一种则是使用官方的PopupMenuButton组件进行实现。 如果没有特殊的…

分享一下怎么做一个商城小程序

如何制作一个商城小程序&#xff1a;功能解析、设计思路与实现方法 一、引言 随着移动设备的普及和微信小程序的兴起&#xff0c;越来越多的消费者选择在商城小程序上进行购物。商城小程序具有便捷、高效、即用即走等特点&#xff0c;为企业提供了新的销售渠道和推广方式。本…

吴恩达《机器学习》2-5->2-7:梯度下降算法与理解

一、梯度下降算法 梯度下降算法的目标是通过反复迭代来更新模型参数&#xff0c;以便最小化代价函数。代价函数通常用于衡量模型的性能&#xff0c;我们希望找到使代价函数最小的参数值。这个过程通常分为以下几个步骤&#xff1a; 初始化参数&#xff1a; 随机或设定初始参数…

C++STL----list的模拟实现

文章目录 list模拟实现的大致框架节点类的模拟实现迭代器类的模拟实现迭代器类存在的意义迭代器类的模板参数说明运算符的重载--运算符的重载&#xff01;与运算符的重载*运算符的重载->运算符的重载 list的模拟实现默认成员函数迭代器相关函数元素修改相关函数front和backi…

edge浏览器的隐藏功能

1. edge://version 查看版本信息 2. edge://flags 特性界面 具体到某一特性&#xff1a;edge://flags/#overlay-scrollbars 3. edge://settings设置界面 详情可参考chrome: 4. edge://extensions 扩展程序页面 5. edge://net-internals 网络事件信息 6. edge://component…

【指针、数组参数】

void interchange(int * u,int * v) {int temp *u; //带*号指向该地址上的值*u *v;*v temp; }int main1(void) {int x 10;int y 5;printf("before: x %d y %d\n",x,y);interchange(&x,&y);printf("after: x %d y %d\n",x,y); }结果&…

Redis测试新手入门教程

在测试过程中&#xff0c;我们或多或少会接触到Redis&#xff0c;今天就把在小破站看到的三丰老师课程&#xff0c;把笔记整理了下&#xff0c;用来备忘&#xff0c;也希望能给大家带来亿点点收获。 主要分为两个部分&#xff1a; 一、缓存技术在后端架构中是如何应用的&#…

十八、模型构建器(ModelBuilder)快速提取城市建成区——批量掩膜提取夜光数据、夜光数据转面、面数据融合、要素转Excel(基于参考比较法)

一、前言 前文实现批量投影栅格、转为整型,接下来重点实现批量提取夜光数据,夜光数据转面、夜光数据面数据融合、要素转Excel。将相关结果转为Excel,接下来就是在Excel中进行阈值的确定,阈值确定无法通过批量操作,除非采用其他方式,但是那样的学习成本较高,对于参考比较…

Linux Centos7安装后,无法查询到IP地址,无ens0,只有lo和ens33的解决方案

文章目录 前言1 查看network-scripts目录2 创建并配置 ifcfg-ens33 文件3 禁用NetworkManager4 重新启动网络服务总结 前言 在VMware中&#xff0c;安装Linux centos7操作系统后&#xff0c;想查询本机的IP地址&#xff0c;执行ifconfig命令 ifconfig结果如下&#xff1a; 结…

基于深度学习的单图像人群计数研究:网络设计、损失函数和监控信号

摘要 https://arxiv.org/pdf/2012.15685v2.pdf 单图像人群计数是一个具有挑战性的计算机视觉问题,在公共安全、城市规划、交通管理等领域有着广泛的应用。近年来,随着深度学习技术的发展,人群计数引起了广泛的关注并取得了巨大的成功。通过系统地回顾和总结2015年以来基于深…

【Overload游戏引擎细节分析】PBR材质Shader---完结篇

PBR基于物理的渲染可以实现更加真实的效果&#xff0c;其Shader值得分析一下。但PBR需要较多的基础知识&#xff0c;不适合不会OpenGL的朋友。 一、PBR理论 PBR指基于物理的渲染&#xff0c;其理论较多&#xff0c;需要的基础知识也较多&#xff0c;我在这就不再写一遍了&…

【Vue】vant上传封装方法,van-uploader上传接口封装

项目场景&#xff1a; 问题描述 提示&#xff1a;这里描述项目中遇到的问题&#xff1a; 在移动端项目中&#xff0c;使用vant组件上传&#xff0c;但是vant没有上传方法&#xff0c;需要自己写。 html代码 <van-uploader v-model"fileList" :max-size"50…

SV-10A-4G IP网络报警非可视终端 (4G版)

SV-10A-4G IP网络报警非可视终端 &#xff08;4G版&#xff09; https://item.taobao.com/item.htm?spma21dvs.23580594.0.0.621e3d0dpv5knb&ftt&id745728046948 产品简介&#xff1a; 通过局域网/广域网网组网的网络报警系统&#xff0c;改变传统局域网组网…

[Linux C] signal 的使用

前言&#xff1a; signal 是一种通信机制&#xff0c;可以跨进程发送&#xff0c;可以同进程跨线程发送&#xff0c;可以不同进程向指定线程发送。 信号的创建有两套api&#xff0c;一个是signal&#xff0c;一个是sigaction&#xff0c;signal缺陷很多&#xff0c;比如没有提…