解密人工智能:决策树 | 随机森林 | 朴素贝叶斯

在这里插入图片描述

文章目录

  • 一、机器学习算法简介
    • 1.1 机器学习算法包含的两个步骤
    • 1.2 机器学习算法的分类
  • 二、决策树
    • 2.1 优点
    • 2.2 缺点
  • 三、随机森林
  • 四、Naive Bayes(朴素贝叶斯)
  • 五、结语

一、机器学习算法简介

机器学习算法是一种基于数据和经验的算法,通过对大量数据的学习和分析,自动发现数据中的模式、规律和关联,并利用这些模式和规律来进行预测、分类或优化等任务。机器学习算法的目标是从数据中提取有用的信息和知识,并将其应用于新的未知数据中。
在这里插入图片描述

1.1 机器学习算法包含的两个步骤

机器学习算法通常包括两个主要步骤:训练和预测。在训练阶段,算法使用一部分已知数据(训练数据集)来学习模型或函数的参数,以使其能够对未知数据做出准确的预测或分类。在预测阶段,算法将学习到的模型应用于新的数据,通过模型对数据进行预测、分类或其他任务。

1.2 机器学习算法的分类

机器学习算法可以是基于统计学原理、优化方法、神经网络等等。根据学习的方式不同,机器学习算法可以分为监督学习、无监督学习和强化学习等几种类型。不同的机器学习算法适用于不同的问题和数据类型,选择合适的算法可以提高机器学习的任务效果。

  1. 监督学习算法:监督学习算法需要训练数据集中包含输入和对应的输出(或标签)信息。常用的监督学习算法包括:线性回归、逻辑回归、决策树、支持向量机、朴素贝叶斯、人工神经网络等。

  2. 无监督学习算法:无监督学习算法不需要训练数据集中的输出信息,主要用于数据的聚类和降维等问题。常用的无监督学习算法包括:K均值聚类、层次聚类、主成分分析、关联规则挖掘等。

  3. 强化学习算法:强化学习算法通过与环境进行交互,试图找到最优策略来最大化奖励。常用的强化学习算法包括:Q学习、深度强化学习算法等。

此外,还有一些常用的机器学习算法和技术,如集成学习、降维方法、深度学习、迁移学习、半监督学习等,它们通过不同的方式和建模方法来解决不同的问题。选择合适的机器学习算法需要考虑问题的性质、数据的特点、算法的可解释性和计算效率等因素。

二、决策树

决策树是一种用于分类和回归任务的机器学习算法。它们是决策的强大工具,可用于对变量之间的复杂关系进行建模。
在这里插入图片描述
决策树是一种树状结构,每个内部节点代表一个决策点,每个叶节点代表最终结果或预测。该树是通过根据输入特征的值递归地将数据分割成子集来构建的。目标是找到最大化不同类别或目标值之间分离的分割。

在这里插入图片描述

决策树的主要优点之一是它们易于理解和解释。树形结构可以清晰地可视化决策过程,并且可以轻松评估每个特征的重要性。构建决策树的过程从选择根节点开始,根节点是最好地将数据分为不同类别或目标值的特征。然后根据该特征的值将数据分成子集,并对每个子集重复该过程,直到满足停止标准。停止标准可以基于子集中的样本数量、子集的纯度或树的深度。

在这里插入图片描述
决策树的主要缺点之一是它们很容易过度拟合数据,特别是当树很深并且有很多叶子时。当树过于复杂并且适合数据中的噪声而不是底层模式时,就会发生过度拟合。这可能会导致对新的、未见过的数据的泛化性能较差。为了防止过度拟合,可以使用剪枝、正则化和交叉验证等技术。决策树的另一个问题是它们对输入特征的顺序敏感。不同的特征顺序会导致不同的树结构,最终的树可能不是最优的。为了克服这个问题,可以使用随机森林和梯度提升等技术。

2.1 优点

  • 易于理解和解释:树形结构可以清晰地可视化决策过程,并且可以轻松评估每个特征的重要性。

  • 处理数值和分类数据:决策树可以处理数值和分类数据,使其成为适用于各种应用的多功能工具。

  • 高精度:决策树可以在很多数据集上实现高精度,特别是当树不深时。

  • 对异常值具有鲁棒性:决策树不受异常值的影响,这使得它们适合有噪声的数据集。

  • 既可用于分类任务,又可用于回归任务。

2.2 缺点

  • 过度拟合:决策树很容易对数据过度拟合,特别是当树很深并且有很多叶子时。

  • 对输入特征的顺序敏感:不同的特征顺序会导致不同的树结构,最终的树可能不是最优的。

  • 不稳定:决策树对数据的微小变化很敏感,这会导致不同的树结构和不同的预测。

  • 偏差:决策树可能会偏向于具有更多级别的特征或具有多个级别的分类变量,这可能导致预测不准确。

  • 不适合连续变量:决策树不适合连续变量,如果变量是连续的,则可能导致将变量分成许多级别,这将使树变得复杂并导致过度拟合。

三、随机森林

随机森林是一种集成机器学习算法,可用于分类和回归任务。它是多个决策树的组合,其中每棵树都是使用数据的随机子集和特征的随机子集来生长的。最终的预测是通过对森林中所有树木的预测进行平均来做出的。
在这里插入图片描述
使用多个决策树背后的想法是,虽然单个决策树可能容易过度拟合,但决策树的集合或森林可以降低过度拟合的风险并提高模型的整体准确性。构建随机森林的过程首先使用一种称为引导的技术创建多个决策树。Bootstrapping 是一种统计方法,涉及从原始数据集中随机选择数据点并进行替换。这会创建多个数据集,每个数据集都有一组不同的数据点,然后用于训练单个决策树。随机森林的另一个重要方面是为每棵树使用随机的特征子集。这称为随机子空间方法。这减少了森林中树木之间的相关性,进而提高了模型的整体性能。

  • 优点:随机森林的主要优点之一是它比单个决策树更不容易过度拟合。多棵树的平均可以消除误差并减少方差。随机森林在高维数据集和具有大量 calcategories 变量的数据集中也表现良好。

  • 缺点:随机森林的缺点是训练和预测的计算成本可能很高。随着森林中树木数量的增加,计算时间也会增加。此外,随机森林比单个决策树的可解释性更差,因为更难理解每个特征对最终预测的贡献。

  • 总结:总之,随机森林是一种强大的集成机器学习算法,可以提高决策树的准确性。它不太容易过度拟合,并且在高维和分类数据集中表现良好。然而,与单个决策树相比,它的计算成本较高且可解释性较差。

四、Naive Bayes(朴素贝叶斯)

朴素贝叶斯是一种简单高效的机器学习算法,基于贝叶斯定理,用于分类任务。它被称为“朴素”,因为它假设数据集中的所有特征都是相互独立的,而现实世界数据中的情况并不总是如此。尽管有这样的假设,朴素贝叶斯被发现在许多实际应用中表现良好。
在这里插入图片描述
该算法通过使用贝叶斯定理来计算给定输入特征值的给定类别的概率。贝叶斯定理指出,给定一些证据(在本例中为特征值)的假设(在本例中为类别)的概率与给定假设的证据的概率乘以假设的先验概率成正比。朴素贝叶斯算法可以使用不同类型的概率分布(例如高斯分布、多项式分布和伯努利分布)来实现。高斯朴素贝叶斯用于连续数据,多项式朴素贝叶斯用于离散数据,伯努利朴素贝叶斯用于二进制数据。

  • 优点:朴素贝叶斯的主要优点之一是它的简单性和效率。它易于实现,并且比其他算法需要更少的训练数据。它在高维数据集上也表现良好,并且可以处理丢失的数据。

  • 缺点:朴素贝叶斯的主要缺点是假设特征之间的独立性,这在现实世界的数据中通常是不正确的。这可能会导致预测不准确,尤其是当特征高度相关时。此外,朴素贝叶斯对数据集中不相关特征的存在很敏感,这可能会降低其性能。

  • 总结:综上所述,朴素贝叶斯是一种简单高效的机器学习算法,基于贝叶斯定理,用于分类任务。它在高维数据集上表现良好,并且可以处理丢失的数据,但它的主要缺点是假设特征之间的独立性,如果数据不独立,则可能导致预测不准确。

五、结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,春人的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是春人前进的动力!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/109643.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

js的小题

//闭包实例代码 function fn1() {let a 1;function fn2() {a;console.log(a);}console.log(a,a) } fn1(); 执行结果: 1 a 现在思考怎么调用里面的fn2函数呢? 答案是: //闭包实例代码 function fn1() {let a 1;function fn2() {a;console.log(a);}console.log(a,a)return f…

安卓核心板_天玑700、天玑720、天玑900_5G模块规格参数

5G安卓核心板是采用新一代蜂窝移动通信技术的重要设备。它支持万物互联、生活云端化和智能交互的特性。5G技术使得各类智能硬件始终处于联网状态,而物联网则成为5G发展的主要动力。物联网通过传感器、无线网络和射频识别等技术,实现了物体之间的互联。而…

正点原子嵌入式linux驱动开发——Linux RTC驱动

RTC也就是实时时钟,用于记录当前系统时间,对于Linux系统而言时间是非常重要的,就和使用Windows电脑或手机查看时间一样,在使用Linux设备的时候也需要查看时间。本章就来学习一下如何编写Linux下的RTC驱动程序。 Linux内核RTC驱动…

算法笔记【8】-合并排序算法

文章目录 一、前言二、合并排序算法基本原理三、实现步骤四、优缺点分析 一、前言 合并排序算法通过采用分治策略和递归思想,实现了高效、稳定的排序功能。本文将深入探讨合并排序算法的原理、实现步骤,并讨论其优缺点。 二、合并排序算法基本原理 合…

一文看懂完整的研究生生活规划

很多人在刚从本科步入研究生生活的时候,总是对于自己三年的研究生生活没有清晰的规划,总是在各种浪费时间,没有拿到想要的东西,也没有学到想学的东西,亦或是没有找到理想的工作,最后草草的毕业。这个时候我们就应该对于自己的研究生生活有个清晰的规划,帮助我们不留遗憾…

人大与加拿大女王大学金融管理硕士项目:开启国际视野,成就金融领袖

生活中,我们总会遇到各种各样的困难和挑战。有时候,我们会感到沮丧、迷茫甚至绝望。但是,正是这些困难和挑战,让我们变得更加坚强、勇敢和成熟。在这个职场竞争愈发激烈的时代,不断地充实自己是非常重要的。如果你从事…

IP代理被低估的作用,你知道吗?

IP说简单不简单,说复杂也不复杂,打个比方,IP就好比我们上网的一个门牌号,每家每户都会有一个门牌号,而且是唯一的地址。而代理IP(代理服务器)是一个位于中间的服务器,充当客户端和目…

centos部署tomcat

Java Downloads | Oracle 上面是下载网址 Tomcat是由Apache开发的一个Servlet容器,实现了对Servlet和JSP的支持,并提供了作为Web服务器的一些特有功能,如Tomcat管理和控制平台,安全域管理和Tomcat阀 简单来说:Tomcat…

【人口数据集总结】WorldPop、GWPv4等

1 全球人口数据WorldPop 数据详解可参见另一博客-【数据集8】全球人口数据WorldPop详解。 WorldPop是由南安普顿大学在2013年10月发起的全球人口数据评估,将AfriPop,AsiaPop和AmeriPop人口调查项目整合到一起。数据集已经被众多的组织和机构使用:联合国开发计划署,联合国…

【多线程相关其二】进程与线程

进程vs线程 进程(process)指的是正在运行的程序的实例,即an instance of a computer that is being executed。用拆字法理解就是:进行中的程序。程序是一个没有生命的实体,只有处理器执行它的时候才能成为一个活动的实…

技术分享| anyRTC低延时直播优化

直播系统就是把活动现场的音频或视频信号经数字压缩后,传送到直播多媒体服务器(CDN)上,在互联网上供广大网友或授权特定人群收听或收看。而随着技术的日益更新,人民对于直播的互动性,实时性要求更高了,传统的直播少则几…

Spring Boot中配置默认的HikariCP数据源

在了解HiKari之前,我们需要先了解关于数据访问的相关概念: 什么是JDBC JDBC(Java Database Connectivity)是Java编程语言用于与数据库进行交互的标准API。它提供了一组类和接口,用于执行数据库操作,如连接…

JVM虚拟机:从结构到指令让你对栈有足够的认识

本文重点 在前面的课程中,我们学习了运行时数据区的大概情况,从本文开始,我们将对一些组件进行详细的介绍,本文我们将学习栈。栈内存主管java的运行,是在线程创建时创建的,它是线程私有的,它的生命周期是跟随线程的生命期,也就是说线程结束栈内存就释放了,对于栈来说…

Elasticsearch:标量量化 101 - scalar quantization 101

作者:BENJAMIN TRENT 什么是标量量化以及它是如何工作的? 大多数嵌入模型输出 float32 向量值。 虽然这提供了最高的保真度,但考虑到向量中实际重要的信息,这是浪费的。 在给定的数据集中,嵌入永远不需要每个单独维度…

java项目之驾校预约管理系统(ssm框架)

项目简介 校预约管理系统实现了以下功能: 管理员:首页、个人中心、学员管理、驾校教练管理、驾校车辆管理、预约管理、取消预约管理、驾校公告管理、系统管理。驾校教练:首页、个人中心、驾校教练管理、预约管理、取消预约管理。学员&#…

编译环境里存在yaml-cpp的多个版本时可能引起的问题

有时要编译的程序自带了特定版本的yaml-cpp,同时系统目录下也安装了更高版本的yaml-cpp,这时可能引起编译错误,就是某些yaml-cpp的API不认识,例如: 出现这种问题倒好办,正常情况下不可能,肯定能…

【Unity PlasticSCM】记录:从介绍 下载 到拉取项目

实习的时候项目是svn管理的,这次mini的项目管理最后选择了美术策划友好的plasticSCM,但之前没有接触过,所以决定花费一点时间去了解,然后记录一下中间遇到的一些问题。 了解及下载Plastic b站很详细介绍PlasticSCM:Un…

电力巡检/电力抢修行业解决方案:AI+视频技术助力解决巡检监管难题

一、行业背景 随着国民经济的蓬勃发展,工业用电和居民用电需求迅速增加,电厂、变电站、输电线路高负荷运转,一旦某个节点发生故障,对生产、生活造成巨大的影响。目前电力行业生产现场人员、设备较多,而生产监督员有限…

JMeter简单使用

JMeter是一个功能强大的开源性能测试工具,用于对各种应用程序、协议和服务器进行性能和负载测试。它被广泛用于测试Web应用程序的性能,并可以模拟多种负载条件和行为。 JMeter使用 添加线程组 设置线程组的配置 设置请求 配置请求 添加监听器 查看压…

【网络安全】Seeker内网穿透追踪定位

Seeker追踪定位对方精确位置 前言一、kali安装二、seeker定位1、ngrok平台注册2、获取一次性邮箱地址3、ngrok平台登录4、ngrok下载5、ngrok令牌授权6、seeker下载7、运行seeker定位8、运行隧道开启监听9、伪装链接10、用户点击(获取定位成功)11、利用经…