STM32 OTA应用开发——通过串口/RS485实现OTA升级(方式2)
目录
- STM32 OTA应用开发——通过串口/RS485实现OTA升级(方式2)
- 前言
- 1 环境搭建
- 2 功能描述
- 3 程序编写
- 3.1 BootLoader部分
- 3.2 APP的制作
- 4 修改工程中的内存配置
- 4.1 Bootloader工程内存配置
- 4.2 APP工程内存配置
- 5 烧录相关配置
- 5.1 BootLoader部分
- 5.2 APP部分
- 6 运行测试
- 结束语
前言
什么是OTA?
百度百科:空中下载技术(Over-the-Air Technology; OTA),是通过移动通信的空中接口实现对移动终端设备及SIM卡数据进行远程管理的技术。经过公网多年的应用与发展,已十分成熟,网络运营商通过OTA技术实现SIM卡远程管理,还能提供移动化的新业务下载功能。
实际上,现在我们所说的OTA比百度百科的定义还要更广泛,OTA的形式已经不再局限于手机和SIM卡,只要涉及到远程下载升级程序的方式我们都可以称之为OTA。例如通过4G,5G,WiFI,蓝牙等无线通讯进行下载升级的可以称为OTA,通过U盘,RS485等串行接口进行升级的也可以称之为OTA。
OTA的作用?
OTA的意义在于它在一定程度上突破了距离的限制,在不借助烧录器的情况下完成固件的下载升级,极大的方便了产品的升级和维护,降低售后成本。
什么是BootLoader?
百度百科:在嵌入式操作系统中,BootLoader是在操作系统内核运行之前运行。可以初始化硬件设备、建立内存空间映射图,从而将系统的软硬件环境带到一个合适状态,以便为最终调用操作系统内核准备好正确的环境。在嵌入式系统中,通常并没有像BIOS那样的固件程序(注,有的嵌入式CPU也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由BootLoader来完成。
实际上,BootLoader不仅仅在操作系统上使用,在一些内存小,功能应用较为简单的单片机设备上面也可以通过BootLoader来完成OTA升级。
我之前也有发过一些关于STM32远程OTA的文章,实现的方式有很多种,感兴趣的同学可以去看一下。
OTA应用开发系列合集:https://blog.csdn.net/ShenZhen_zixian/article/details/129074047
那么这一期我来介绍一下如何自己制作一个BootLoader程序,并且通过串口或者RS485实现OTA升级。
1 环境搭建
关于STM32以及Keil的环境这里就不具体介绍了,网上教程也很多,不懂的同学自行查阅资料。
2 功能描述
在做bootloader之前一定要先想好升级的途径和方式,这样才好规划分区以及制作bootloader。
关于bootloader详细的讲解,可以看下我之前发的博客:
STM32 OTA应用开发——自制BootLoader
分区介绍:
我用的是STM32F407,内存是512K的(想用内存更小的MCU也是可以的,改下各个分区的内存分配就行了)。
注:F4系列的MCU不像F1那样,内存扇区都很大(最少也是16K),而且同一块扇区只能一起擦除,所以就没办法分的那么细了。详细的内存分布可以参考下面的两个图。
STM32F4x扇区分布图如下:
STM32F1x扇区分布图如下:
那么我这里呢,就用一个512k的内存,分成3个区域,来实现一个OTA的功能。
分区表如下:
name | offset | size | function |
---|---|---|---|
boot | 0x08000000 | 0x00004000 | 存放boot程序 |
setting | 0x08004000 | 0x00004000 | 存放设备需要保存的一些参数 |
app | 0x08008000 | 0x00078000 | 存放应用程序 |
方案介绍:
1)bootloader部分:
开始运行后先等待5s,在这个时间内如果收到串口2或者RS485的升级命令就进入升级模式,如果超时则跳转到用户程序(APP)。
在升级模式,可以通过串口2或者RS485传输要升级的固件,传输的数据协议我这里图方便就直接用Ymodem了,不知道Ymodem协议的可以先自行查阅一下资料。
2)APP部分:
APP部分修改一下中断向量表地址即可,其他的随便你做什么应用。
另外,我在分区的时候留了一块settimg
区,在实际的应该中如果有需要记录一些掉电后还能保存的数据,那么这块区域就可以用得上了。
3 程序编写
3.1 BootLoader部分
不管用的是什么MCU,要使用OTA都离不开BootLoader,BootLoader是一个统称,它其实只是一段引导程序,在MCU启动的时候会先运行这段代码,判断是否需要升级,如果不需要升级就跳转到APP分区运行用户代码,如果需要升级则先通过一些硬件接口接收和搬运要升级的新固件,然后再跳转到APP分区运行新固件,从而实现OTA升级。
BootLoader的制作需要根据实际的需求来做,不同的运行方式或者升级方式在做法上都是有区别的,包括BootLoader所需要的内存空间也不尽相同。
不过不管是用什么方式,Bootloader都应该尽可能做的更小更简洁,这样的话内存的开销就更小,对于内存较小的MCU来说压力就没那么大了。
注:我这里是基于正点原子的工程模板改的,增加了自己的功能。
示例代码如下:
Bootloader分区定义:
#define FLASH_SECTOR_SIZE 1024
#define FLASH_SECTOR_NUM 512 // 512K
#define FLASH_START_ADDR ((uint32_t)0x8000000)
#define FLASH_END_ADDR ((uint32_t)(0x8000000 + FLASH_SECTOR_NUM * FLASH_SECTOR_SIZE))
//flash sector addr
#define ADDR_FLASH_SECTOR_0 ((uint32_t)0x08000000) //sector0 addr, 16 Kbytes
#define ADDR_FLASH_SECTOR_1 ((uint32_t)0x08004000) //sector1 addr, 16 Kbytes
#define ADDR_FLASH_SECTOR_2 ((uint32_t)0x08008000) //sector2 addr, 16 Kbytes
#define ADDR_FLASH_SECTOR_3 ((uint32_t)0x0800C000) //sector3 addr, 16 Kbytes
#define ADDR_FLASH_SECTOR_4 ((uint32_t)0x08010000) //sector4 addr, 64 Kbytes
#define ADDR_FLASH_SECTOR_5 ((uint32_t)0x08020000) //sector5 addr, 128 Kbytes
#define ADDR_FLASH_SECTOR_6 ((uint32_t)0x08040000) //sector6 addr, 128 Kbytes
#define ADDR_FLASH_SECTOR_7 ((uint32_t)0x08060000) //sector7 addr, 128 Kbytes
#define ADDR_FLASH_SECTOR_8 ((uint32_t)0x08080000) //sector8 addr, 128 Kbytes
#define ADDR_FLASH_SECTOR_9 ((uint32_t)0x080A0000) //sector9 addr, 128 Kbytes
#define ADDR_FLASH_SECTOR_10 ((uint32_t)0x080C0000) //sector10 addr,128 Kbytes
#define ADDR_FLASH_SECTOR_11 ((uint32_t)0x080E0000) //sector11 addr,128 Kbytes
#define BOOT_SECTOR_ADDR 0x08000000 // BOOT sector start addres
#define BOOT_SECTOR_SIZE 0x4000 // BOOT sector size
#define SETTING_SECTOR_ADDR 0x08004000 // SETTING sector start addres
#define SETTING_SECTOR_SIZE 0x4000 // SETTING sector size
#define APP_SECTOR_ADDR 0x08008000 // APP sector start address
#define APP_SECTOR_SIZE 0x78000 // APP sector size
#define BOOT_ERASE_SECTORS_NUM 1 // 16k
#define SETTING_ERASE_SECTORS_NUM 1 // 16k
#define APP_ERASE_SECTORS_NUM 6 // 16k + 16k + 64k + 128k + 128k + 128k
main函数:
#include "bootloader.h"
#include "usart.h"
#include "rs485.h"
#include "delay.h"
#include "ymodem.h"
#define WAIT_TIMEOUT 5
void print_boot_message(void)
{
uart_log("---------- Enter BootLoader ----------\r\n");
uart_log("\r\n");
uart_log("======== flash pration table =========\r\n");
uart_log("| name | offset | size |\r\n");
uart_log("--------------------------------------\r\n");
uart_log("| boot | 0x%08X | 0x%08X |\r\n", BOOT_SECTOR_ADDR, BOOT_SECTOR_SIZE);
uart_log("| setting | 0x%08X | 0x%08X |\r\n", SETTING_SECTOR_ADDR, SETTING_SECTOR_SIZE);
uart_log("| app | 0x%08X | 0x%08X |\r\n", APP_SECTOR_ADDR, APP_SECTOR_SIZE);
uart_log("======================================\r\n");
}
void print_wait_message(void)
{
uart_log("------- Please enter parameter -------\r\n");
uart_log("[1].Start program\r\n");
uart_log("[2].Update program\r\n");
uart_log("--------------------------------------\r\n");
}
int main()
{
process_status process;
uint16_t timerout = 0;
delay_init(168);
uart_init(115200);
ymodem_init();
print_boot_message();
print_wait_message();
while (1)
{
process = get_ymodem_status();
switch (process)
{
case WAIT_START_PROGRAM:
uart_log("wait start app...(%ds)\r\n", WAIT_TIMEOUT - timerout);
delay_ms(1000);
timerout ++;
if(timerout >= WAIT_TIMEOUT)
{
set_ymodem_status(START_PROGRAM);
}
break;
case START_PROGRAM:
uart_log("start app...\r\n");
delay_ms(50);
if (!jump_app(APP_SECTOR_ADDR))
{
uart_log("start app failed: app no program\r\n");
delay_ms(1000);
}
break;
case UPDATE_PROGRAM:
ymodem_c();
uart_log("update app program...\r\n");
delay_ms(1000);
break;
case UPDATE_SUCCESS:
uart_log("update success\r\n");
uart_log("system reboot...\r\n");
delay_ms(1000);
system_reboot();
break;
default:
break;
}
}
}
Ymodem协议处理:
#define YMODEM_SOH 0x01
#define YMODEM_STX 0x02
#define YMODEM_EOT 0x04
#define YMODEM_ACK 0x06
#define YMODEM_NAK 0x15
#define YMODEM_CA 0x18
#define YMODEM_C 0x43
#define MAX_QUEUE_SIZE 1200
typedef void (*ymodem_callback)(process_status);
typedef struct
{
process_status process;
uint8_t status;
uint8_t id;
uint32_t addr;
uint8_t sectors_size;
ymodem_callback cb;
} ymodem_t;
//顺序循环队列的结构体定义如下:
typedef struct
{
uint8_t queue[MAX_QUEUE_SIZE];
int rear; //队尾指针
int front; //队头指针
int count; //计数器
} seq_queue_t;
typedef struct
{
uint8_t data[1200];
uint16_t len;
} download_buf_t;
void ymodem_ack(void)
{
uint8_t buf[3];
buf[0] = YMODEM_ACK;
buf[1] = 0x0D;
buf[2] = 0x0A;
RS485_Send_Data(buf, 3);
}
void ymodem_nack(void)
{
uint8_t buf[3];
buf[0] = YMODEM_NAK;
buf[1] = 0x0D;
buf[2] = 0x0A;
RS485_Send_Data(buf, 3);
}
void ymodem_c(void)
{
uint8_t buf[3];
buf[0] = YMODEM_C;
buf[1] = 0x0D;
buf[2] = 0x0A;
RS485_Send_Data(buf, 3);
}
void set_ymodem_status(process_status process)
{
ymodem.process = process;
}
process_status get_ymodem_status(void)
{
process_status process = ymodem.process;
return process;
}
void ymodem_start(ymodem_callback cb)
{
if (ymodem.status == 0)
{
ymodem.cb = cb;
}
}
void ymodem_recv(download_buf_t *p)
{
uint8_t type = p->data[0];
switch (ymodem.status)
{
case 0:
if (type == YMODEM_SOH)
{
ymodem.process = BUSY;
ymodem.addr = APP_SECTOR_ADDR;
uart_log("erase flash: 0x%08X\r\n", APP_SECTOR_ADDR);
mcu_flash_erase(ymodem.addr, APP_ERASE_SECTORS_NUM);
uart_log("erase flash success\r\n");
ymodem_ack();
ymodem_c();
ymodem.status++;
}
else if (type == '1')
{
uart_log("start program now\r\n");
ymodem.process = START_PROGRAM;
}
else if (type == '2')
{
uart_log("enter update mode\r\n");
ymodem.process = UPDATE_PROGRAM;
}
break;
case 1:
if (type == YMODEM_SOH || type == YMODEM_STX)
{
if (type == YMODEM_SOH)
{
mcu_flash_write(ymodem.addr, &p->data[3], 128);
ymodem.addr += 128;
}
else
{
mcu_flash_write(ymodem.addr, &p->data[3], 1024);
ymodem.addr += 1024;
}
ymodem_ack();
}
else if (type == YMODEM_EOT)
{
ymodem_nack();
ymodem.status++;
}
else
{
ymodem.status = 0;
}
break;
case 2:
if (type == YMODEM_EOT)
{
ymodem_ack();
ymodem_c();
ymodem.status++;
}
break;
case 3:
if (type == YMODEM_SOH)
{
ymodem_ack();
ymodem.status = 0;
ymodem.process = UPDATE_SUCCESS;
}
}
p->len = 0;
}
void ymodem_init(void)
{
RS485_Init(115200);
timer_init();
queue_initiate(&rx_queue);
}
关于bootloader详细的讲解,可以看下我之前发的博客:
STM32 OTA应用开发——自制BootLoader
完整代码下载地址:https://download.csdn.net/download/ShenZhen_zixian/87553496
3.2 APP的制作
APP部分根据自己实际的功能来做,只要记得修改中断向量表地址即可。地址的值等于你APP区的起始地址。
示例代码如下:
main函数:
#include "main.h"
#include "usart.h"
#include "delay.h"
#define APP_VERSION "V100"
#define NVIC_VTOR_MASK 0x3FFFFF80
#define APP_PART_ADDR 0x08008000
void ota_app_vtor_reconfig(void)
{
/* Set the Vector Table base location by user application firmware definition */
SCB->VTOR = APP_PART_ADDR & NVIC_VTOR_MASK;
}
void led_init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOF, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOF, &GPIO_InitStructure);
GPIO_SetBits(GPIOF, GPIO_Pin_9);
}
void print_boot_message(void)
{
uart_log("======================================\r\n");
uart_log("-------------- Enter APP -------------\r\n");
uart_log ("app version is: %s\r\n", APP_VERSION);
uart_log("======================================\r\n");
}
int main(void)
{
ota_app_vtor_reconfig();
delay_init(168);
uart_init(115200);
print_boot_message();
led_init();
uart_log ("app init success\r\n");
while (1)
{
GPIO_SetBits(GPIOF, GPIO_Pin_9);
delay_ms(1000);
GPIO_ResetBits(GPIOF, GPIO_Pin_9);
delay_ms(1000);
}
}
完整代码下载地址:https://download.csdn.net/download/ShenZhen_zixian/87553496
4 修改工程中的内存配置
因为我们对stm32的内存进行了分区,不同的代码要存放在不同的区域,因此,我们在编译工程之前需要先定义好各自的区域,以免出现内存越界。
4.1 Bootloader工程内存配置
Bootloader的起始地址不需要改,按flash默认地址即可,size需要改成实际分区大小。
4.2 APP工程内存配置
APP的起始地址和size都需要根据实际的分区来改。
5 烧录相关配置
我们的Bootloader做好以后需要烧录到MCU里面,可以直接用Keil uVison来下载,也可以用J-Flash或者其他,这个都没关系,但是要注意内存的分配,要把固件烧到对应的内存地址上。
5.1 BootLoader部分
1)使用Keil uVision下载
如果是用keil下载的话,需要注意flash的配置,具体如下:
2)使用其他下载工具
如果是用J-Flash或者STlink的工具烧录的话注意烧录的起始地址是0x08000000就好了。
5.2 APP部分
1)使用Keil uVision下载
跟BootLoader一样,我们按照前面分配好的空间配置APP的参数即可。
2)使用其他下载工具
如果是用J-Flash或者STlink的工具烧录的话注意烧录的起始地址是0x08008000就好了。
6 运行测试
用串口助手查看运行log(我这里用的是XShell,用其他的也是可以的)。
1)开始运行代码
等待5s,如果不需要升级就跳转到App区,如下图:
2)发送命令1
在等待的5s内通过串口2或者RS485发送一个’1’,直接跳转到APP。
注:我这里为了方便调试才用的这种方式,实际上可以根据自己的需求来做。
3)发送命令2,进入升级模式
在等待的5s内通过串口2或者RS485发送一个’2’,进入升级模式。
注:我这里为了方便调试才用的这种方式,实际上可以根据自己的需求来做。比如用按键进入,或者用其他串口,USB之类的,也可以在APP部分做这个功能。
串口调试窗口log如下图:
4)通过Ymodem传输新固件
调试工具我用的是XShell,实际上用其他工具也行,只要支持Ymodem方式传输文件即可。
5)升级固件
固件升级完成后自动重启,重新运行Bootloader和APP。
至此,整个升级流程就走完了。
结束语
好了,关于自制BootLoader并实现串口以及RS485 OTA升级的介绍就讲到这里,本文列举的例子其实只是升级的其中一种方式,只是提供一个思路,不是唯一的方法,实际上最好还是根据自己实际的需求来做。我之前也发给几篇OTA相关的文章,用的都是不同的方式,各有各的优点和缺点,感兴趣的同学可以去看一下。
需要源码的同学可以在下面的链接下载,我把BootLoader和APP都上传了。
如果你有什么问题或者有更好的方法,欢迎在评论区留言。
完整代码下载地址:https://download.csdn.net/download/ShenZhen_zixian/87553496
更多相关文章:
OTA应用开发系列合集:https://blog.csdn.net/ShenZhen_zixian/article/details/129074047