基于51单片机的温度测量报警系统的设计与制作

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、实习目的
  • 二、实习任务
    • 2.1 设计温度测量报警系统硬件电路
    • 2.2 温度测量报警系统软件编程、仿真与调试;
    • 2.3 完成温度测量报警系统的实物制作与调试;
  • 三、 实习内容及实习成果
    • 3.1 温度测量报警系统的功能要求
    • 3.2 温度测量报警系统的设计方法
  • 3.3 温度测量报警系统的设计过程
    • 3.3.1 proteus仿真原理图
    • 3.3.2 程序设计
  • 3.4 温度测量报警系统的实习成果
    • 3.4.1 仿真结果
    • 3.4.2 实物结果
  • 四、总结
  • 实验参考资料(gitee)


前言

该系统通过使用keil5和Proteus软件,最终在硬件上实现一个温度检测报警的小项目(只使用Proteus进行模拟仿真也是可以实现的)


提示:以下是本篇文章正文内容,下面案例可供参考

一、实习目的

1、 掌握51单片机应用编程及调试;
2、 掌握Proteus电路图设计与仿真;
3、 掌握数字温度传感器DS18B20的使用;
4、 掌握单总线协议的基本特点及通信过程,并掌握单片机IO端口模拟单总线时序控制程序;
5、 培养综合运用知识的能力和工程设计的能力。

二、实习任务

2.1 设计温度测量报警系统硬件电路

(1) 进行元器件正确选型;
(2) 在proteus中完成各模块电路和系统电路的设计;
(3) 在Proteus中进行电路仿真与测试;

2.2 温度测量报警系统软件编程、仿真与调试;

(1) 基于Keil完成温度计测量、显示、报警和上下限设定等功能的实现;
(2) 进行软件仿真与调试;

2.3 完成温度测量报警系统的实物制作与调试;

(1)进行温度计的实物焊接;
(2)实际测试,并最终调试完成作品。

三、 实习内容及实习成果

3.1 温度测量报警系统的功能要求

单片机通过实时检测温度传感器DS18B20芯片的状态,并将DS18B20芯片得到的数据进行处理。上电之后数码管显示当前的环境温度,并且蜂鸣器响一下,提示开机。S1作为复位按键,S2和S3作为温度调整按键,S4作为模式选择按键,按下之后可以选择调整温度上限H或者下限L,第三次按下时,数码管恢复显示实时温度。当检测到的温度高于或者低于设置的报警值的时候,蜂鸣器报警同时报警灯闪烁,温度检测精确到0.1度。数据保存在单片机内部EEPOM中。

3.2 温度测量报警系统的设计方法

首先对于以下六个模块进行proteus硬件设计。在硬件原理图完成之后,按照模块进行软件设计。软件设计之后,将程序加载到proteus中进行模拟仿真,测试程序是否能够正常实现所预期功能。实现预期功能之后,就可以进行实物焊接,最后将程序烧录进实物中,再次进行调试。最终达到预期目标。
设计流程

3.3 温度测量报警系统的设计过程

3.3.1 proteus仿真原理图

在这里插入图片描述

3.3.2 程序设计

#include <REGX52.h>	         //调用单片机头文件
#define uint unsigned int
typedef unsigned char uchar;
uint Sign_Negative = 0; //默认为正数

//数码管段选定义      0     1    2    3    4    5	6	 7	  8	   9	H     L
uchar code smg_du[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x89,0xC7};	 //段码

//数码管位选定义
uchar code smg_we[]={0x10,0x20,0x40,0x80};
uchar dis_smg[4] = {0};	

sbit DQ   = P2^4;	//18b20 IO口的定义
sbit beep = P2^3;   //蜂鸣器IO口定义

uint temperature ;  //
bit flag_300ms=1 ;
uchar menu_1;       //菜单设计的变量
uint t_high = 450,t_low = 150;	   //温度上下限报警值 

/***********************1ms延时函数*****************************/
void delay_1ms(uint q)
{
	uint i,j;
	for(i=0;i<q;i++)
		for(j=0;j<120;j++);
}

/***********************小延时函数*****************************/
void delay_uint(uint q)
{
	while(q--);
}


/***********************数码显示函数*****************************/
void display()
{
	static uchar i;   
	i++;
	if(i >= 4)
		i = 0;	
	P1 = 0xff;			     //消隐 
	P3 = smg_we[i];	 		 //位选
	P1 = dis_smg[i];		 //段选	 	
}



/***********************18b20初始化函数*****************************/
void init_18b20()
{
	bit q;
	DQ = 1;				//把总线拿高
	delay_uint(1);	   
	DQ = 0;				//给复位脉冲
	delay_uint(80);		 
	DQ = 1;				//把总线拿高 等待
	delay_uint(10);	 
	q = DQ;				//读取18b20初始化信号
	delay_uint(20);		 
	DQ = 1;				//把总线拿高 释放总线
}

/*************写18b20内的数据***************/
void write_18b20(uchar dat)
{
	uchar i;
	for(i=0;i<8;i++)
	{					 //写数据是低位开始
		DQ = 0;			 //把总线拿低写时间隙开始 
		DQ = dat & 0x01; //向18b20总线写数据了
		delay_uint(5); 	  
		DQ = 1;			 //释放总线
		dat >>= 1;
	}	
}

/*************读取18b20内的数据***************/
uchar read_18b20()
{
	uchar i,value;
	for(i=0;i<8;i++)
	{
		DQ = 0;			 //把总线拿低读时间隙开始 
		value >>= 1;	 //读数据是低位开始
		DQ = 1;			 //释放总线
		if(DQ == 1)		 //开始读写数据 
			value |= 0x80;
		delay_uint(5);	  
	}
	return value;		 //返回数据
}

/*************读取温度的值 读出来的是小数***************/
uint read_temp()
{
    uint wendu = 0;
	uchar low = 0;
	uchar high = 0;
	init_18b20();
	write_18b20(0xcc);	   //跳过64位ROM
	write_18b20(0x44);	   //启动一次温度转换命令
	delay_uint(50);
	init_18b20();		   //初始化18b20
	write_18b20(0xcc);	   //跳过64位ROM
	write_18b20(0xbe);	   //发出读取暂存器命令
	low = read_18b20();
	high = read_18b20();
	wendu = high;
	wendu <<= 8;
	wendu |= low;
	if(wendu & 2048)
	{
		Sign_Negative = 1;
		wendu = ~wendu + 1;
	} else {
		Sign_Negative = 0;
	}
	wendu = wendu * 0.0625;
	wendu = wendu*10 + 0.5;
	
	return wendu;		   //返回读出的温度 带小数
}

/*************定时器0初始化程序***************/
void time_init()	  
{
	EA   = 1;	 	  //开总中断
	TMOD = 0X01;	  //定时器0、定时器1工作方式1
	ET0  = 1;		  //开定时器0中断 
	TR0  = 1;		  //允许定时器0定时
}

/********************独立按键程序*****************/
uchar key_can;	 //按键值

void key()	 //独立按键程序
{
 	key_can = 0;                   //按键值还原
	if((P2 & 0x07) != 0x07)		//按键按下
	{
 		delay_1ms(10);	     	//按键消抖动
		if((P2 & 0x07) != 0x07)
		{						//确认是按键按下
 			switch(P2 & 0x07)
			{
				case 0x06: key_can = 3; break;	   //得到k3键值
				case 0x05: key_can = 2; break;	   //得到k2键值
				case 0x03: key_can = 1; break;	   //得到k1键值
			}
 		}	
		while ((P2 & 0x07)!= 0X07);   //松手检测		
	}
}

/****************按键处理数码管显示函数***************/
void key_with()
{
	if(key_can == 1)	  //设置键
	{
		menu_1 ++;
		if(menu_1 >= 3)
		{
			menu_1 = 0;
 		}
	}
	if(menu_1 == 1)			//设置高温报警
	{
 		if(key_can == 2)
		{
 			t_high ++ ;		//温度上限值加1
 			if(t_high > 990)
				t_high = 990;
		}
		if(key_can == 3)
		{
 			t_high -- ;		//温度上限值减1
 			if(t_high <= t_low)
				t_high = t_low + 1;
		}
		dis_smg[3] = smg_du[t_high % 10];	           //取小数显示
		dis_smg[2] = smg_du[t_high / 10 % 10];  //取个位显示
		dis_smg[2] &= 0x7f;
		dis_smg[1] = smg_du[t_high / 100 % 10] ;	   //取十位显示
		dis_smg[0] = smg_du[10];	 //H
	}	
	if(menu_1 == 2)			//设置低温报警
	{
 		if(key_can == 2)
		{
 			t_low ++ ;		    	//温度下限值加1
 			if(t_low >= t_high)
				t_low = t_high - 1;
		}
		if(key_can == 3)
		{
 				t_low -- ;	    	//温度下限值减1
 			if(t_low <= 1)
				t_low = 1;
		}
		dis_smg[3] = smg_du[t_low % 10];	           //取小数显示
		dis_smg[2] = smg_du[t_low / 10 % 10];          //取个位显示
		dis_smg[2] &= 0x7f;
		dis_smg[1] = smg_du[t_low / 100 % 10];	       //取十位显示
		dis_smg[0] = smg_du[11];	  //L
	}	
	delay_1ms(150);	 
}  

/****************报警函数***************/
void clock_h_l()
{
 	if((temperature <= t_low) || (temperature >= t_high))
	{
 		beep = !beep; 	  //蜂鸣器报警			
 	}
	else
	{
		beep = 1;	
	}			
}

sbit P27 = P2^7;//测试探针

/****************主函数***************/
void main()
{
	beep = 0;		                //开机叫一声   
	delay_1ms(150);
	beep = 1;                       // 响完停止,判断温度在决定是否响
	P0 = P1 = P2 = P3 = 0xff;
	time_init();                    //初始化定时器 
	while(1)
	{		
		key();					//按键程序
		if(key_can != 0)
		{
			key_with();			//设置报警温度	
		}
		if(flag_300ms == 1)	    //300ms 处理一次温度程序
		{	   
		
			flag_300ms = 0;	
			temperature = read_temp();	//先读出温度的值
			clock_h_l();                //报警函数
			if(menu_1 == 0)
			{	
 				dis_smg[3] = smg_du[temperature % 10];	 //取温度的小数显示
				dis_smg[2] = smg_du[temperature / 10 % 10]; //取温度的个位显示
				dis_smg[2] &= 0x7f;//显示小数点 
				dis_smg[0] = dis_smg[1] = 0xFF;
 				if (temperature >= 100 && temperature < 1000)//当温度处于>=10  && <100 
				{
					dis_smg[1] = smg_du[temperature / 100 % 10];	   //取温度的十位显示	
				    if (Sign_Negative) {//如果是负数就加负号
                        dis_smg[0] = 0xBF;
		            }	
				} else {//当fabs(温度)  小于10
                    if (Sign_Negative) {//如果是负数就加负号
                        dis_smg[1] = 0xBF;
		            }	
				}					
			}
		}	
	}
}

/*************定时器0中断服务程序***************/
void time0_int() interrupt 1
{	
	static uchar value;			 //定时2ms中断一次
	TH0 = 0xf8;
	TL0 = 0x30;     //2ms
	display();		//数码管显示函数
	value++;	  
	if(value >= 150)
	{
		value = 0;	  
		flag_300ms = 1;
	}
}

3.4 温度测量报警系统的实习成果

3.4.1 仿真结果

在这里插入图片描述

3.4.2 实物结果

在这里插入图片描述

四、总结

本次实验遇到三个问题。第一个问题:数码管不能正确显示数字。最后发现,是码表与数码管不匹配造成的。在我完修改码表之后,问题得到解决。第二个问题:在于温度转换的计算。我一直算出来的值,与标准值0.0625差距很大。最后通过老师的讲解,发现自己进制没有转换对,导致自己算出来的值不对。第三问题:当我按下按键之后,温度调整太快。最后我通过给按键处理数码管显示函数加入松手检测程序,从而解决了这个问题。设计的不足之处:按一下每次只能加减0.1的数值。设置的温差如果小,按下的次数还比较轻松。倘若要调节10度,那就要按下100次。这个着实让人头疼。因此,我又给它加入了一个延时函数。倘若按下的时间超过2ms,那么设置的温度上限,就会快速增加。减也是如此。我思考之后,发现非常的合理,最后通过修改代码,成功完成这个按键模块的优化。

实验参考资料(gitee)

程序和代码: https://gitee.com/shiguangliushui/Temperature-measurement-alarm-system.git

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/107797.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于定容积法标准容器容积标定中的电动针阀自动化解决方案

摘要&#xff1a;在目前的六氟化硫气体精密计量中普遍采用重量法和定容法两种技术&#xff0c;本文分析了重量法中存在的问题以及定容法的优势&#xff0c;同时也指出定容法在实际应用中还存在自动化水平较低的问题。为了提高定容法精密计量过程中的自动化水平&#xff0c;本文…

从工厂到社会:探索如何应用设计模式工厂模式

文章目录 &#x1f31f; 将设计模式工厂模式运用到社会当中&#x1f34a; 工厂模式在社会中的应用&#x1f389; 工厂&#x1f389; 餐厅&#x1f389; 运输 &#x1f34a; 工厂模式的优势&#x1f389; 代码简洁&#x1f389; 扩展性强&#x1f389; 便于维护和管理 &#x1f…

信钰证券:华为汽车概念股持续活跃 圣龙股份斩获12连板

近期&#xff0c;华为轿车概念股在A股商场遭到热捧&#xff0c;多只股票迭创前史新高。10月23日&#xff0c;华为轿车概念股再度走强&#xff0c;到收盘&#xff0c;板块内圣龙股份、银宝山新涨停&#xff0c;轿车ETF在重仓股提振下盘中一度上涨近2%。业界人士认为&#xff0c;…

Day13力扣打卡

打卡记录 奖励最顶尖的 k 名学生(哈希表排序) 用哈希表对所有的positive与negative词条进行映射&#xff0c;然后遍历求解。tip&#xff1a;常用的分割字符串的操作&#xff1a;1.stringstream配合getline() [格式buf, string, char]2.string.find()[find未找到目标会返回npos…

javaEE -9(7000字详解TCP/IP协议)

一&#xff1a; IP 地址 IP地址&#xff08;Internet Protocol Address&#xff09;是指互联网协议地址&#xff0c;又译为网际协议地址。 IP地址是IP协议提供的一种统一的地址格式&#xff0c;它为互联网上的每一个网络和每一台主机分配一个逻辑地址&#xff0c;以此来屏蔽物…

AOP 笔记

AOP【面向切面编程】 作用&#xff1a;在不惊动原始设计的基础上进行功能增强。 无侵入式编程 连接点&#xff1a;程序执行的任意位置&#xff0c;SpringAOP中&#xff0c;理解为方法的执行。 切入点&#xff1a;匹配连接点的式子,要追加功能的方法 通知&#xff08;写在通…

服务运营 |论文解读: 住院病人“溢出”:一种近似动态规划方法

摘要 在住院床位管理中&#xff0c;医院通常会将住院病人分配到相对应的专科病房&#xff0c;但随着病人的入院和出院&#xff0c;可能会出现病人所需的专科病房满员&#xff0c;而其他病房却有空余床位的情况。于是就有了 "溢出 "策略&#xff0c;即当病人等候时间…

【目标检测】Visdrone数据集和CARPK数据集预处理

之前的博文【目标检测】YOLOv5跑通VisDrone数据集对Visdrone数据集简介过&#xff0c;这里不作复述&#xff0c;本文主要对Visdrone数据集和CARPK数据集进行目标提取和过滤。 需求描述 本文需要将Visdrone数据集中有关车和人的数据集进行提取和合并&#xff0c;车标记为类别0&…

记录--vue3实现excel文件预览和打印

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 前言 在前端开发中&#xff0c;有时候一些业务场景中&#xff0c;我们有需求要去实现excel的预览和打印功能&#xff0c;本文在vue3中如何实现Excel文件的预览和打印。 预览excel 关于实现excel文档在…

M1本地部署Stable Diffusion

下载安装 参考博客: 在Mac上部署Stable Diffusion&#xff08;超详细&#xff0c;AI 绘画入门保姆级教程&#xff09; 安装需要的依赖库 brew install cmake protobuf rust python3.10 git wget 可能中途会存在下载报错或者下载卡主的问题,需要切国内源 brew进行替换源: …

UE4/5 竖排文字文本

方法一、使用多行文本组件 新建一个Widget Blueprint 添加Text 或者 Editable Text(Multi-Line) 、TextBox(Multi-Line) 组件。 添加文字&#xff0c;调整字号&#xff0c;调整成竖排文字。 在Wrapping &#xff08;换行&#xff09;面板中 &#xff1a; 勾选 Auto Wrap te…

iphone备份后怎么转到新手机,iphone备份在哪里查看

iphone备份会备份哪些东西&#xff1f;iphone可根据需要备份设备数据、应用数据、苹果系统等。根据不同的备份数据&#xff0c;可备份的数据类型不同&#xff0c;有些工具可整机备份&#xff0c;有些工具可单项数据备份。本文会详细讲解苹果手机备份可以备份哪些东西。 一、ip…

NodeJS爬取墨刀上的设计图片

背景 设计人员分享了一个墨刀的原型图&#xff0c;但是给的是只读权限&#xff0c;无法下载其中的素材&#xff1b;开发时想下载里面的一张动图&#xff0c;通过浏览器的F12工具在页面结构找到了图片地址。 但是浏览器直接访问后发现没权限&#xff1a; Nginx 的 403 页面。。…

解决git action定时任务执行失败的方法

为了测试git action定时任务是否有效&#xff0c;你可能选择一个最近的时间测试&#xff0c; 但是发现怎么也触发不了&#xff0c;是不是觉得很苦恼。但是同样的时间&#xff0c;在第二天的定时任务又能成功运行。 这是什么原因&#xff1f; 原因就在上图&#xff0c;git act…

【Linux】安装配置解决CentosMobaXterm的使用及Linux常用命令命令模式

目录 一、介绍 1. 背景 2. 讲述&功能 二、Centos安装配置&MobaXterm 1. 创建 2. 安装 3. 配置 4. MobaXterm使用 三、Linux常用命令&模式 1. 常用命令 2. 三种模式 3. 命令使用&换源 4. 拍照备份 一、介绍 1. 背景 CentOS的背景可以追溯到200…

软考系列(系统架构师)- 2011年系统架构师软考案例分析考点

试题一 软件架构&#xff08;质量属性效用树、架构风险、敏感点、权衡点&#xff09; 【问题2】&#xff08;13分&#xff09; 在架构评估过程中&#xff0c;需要正确识别系统的架构风险、敏感点和权衡点&#xff0c;并进行合理的架构决策。请用300字以内的文字给出系统架构风险…

Linux 应用程序CPU调度优化

缘起 实时操作系统&#xff08;Real-time operating system, RTOS&#xff09;&#xff0c;又称即时操作系统&#xff0c;它会按照排序运行、管理系统资源&#xff0c;并为开发应用程序提供一致的基础。实时操作系统与一般的操作系统相比&#xff0c;最大的特色就是实时性&…

springboot maven项目环境搭建idea

springboot maven项目环境搭建idea 文章目录 springboot maven项目环境搭建idea用到的软件idea下载和安装java下载和安装maven下载和安装安装maven添加JAVA_HOME路径&#xff0c;增加JRE环境修改conf/settings.xml&#xff0c;请参考以下 项目idea配置打开现有项目run或build打…

【java学习—九】模板方法(TemplateMethod)设计模式(4)

文章目录 1. 在java中什么是模板2. 模板方法设计解决了什么问题&#xff1f;3. 代码化理解 1. 在java中什么是模板 抽象类体现的就是一种模板模式的设计&#xff0c;抽象类作为多个子类的通用模板&#xff0c;子类在抽象类的基础上进行扩展、改造&#xff0c;但子类总体上会保留…

C++STL---Vector、List所要掌握的基本知识

绪论​ 拼着一切代价&#xff0c;奔你的前程。 ——巴尔扎克&#xff1b;本章主要围绕vector和list的使用&#xff0c;以及容器底层迭代器失效问题&#xff0c;同时会有对原码的分析和模拟实现其底层类函数。​​​​话不多说安全带系好&#xff0c;发车啦&#xff08;建议电脑…