c语言从入门到实战——数组

数组

  • 前言
  • 1. 数组的概念
  • 2. 一维数组的创建和初始化
    • 2.1 数组创建
    • 2.2 数组的初始化
    • 2.3 数组的类型
  • 3. 一维数组的使用
    • 3.1 数组下标
    • 3.2 数组元素的打印
    • 3.3 数组的输入
  • 4. 一维数组在内存中的存储
  • 5. sizeof计算数组元素个数
  • 6. 二维数组的创建
    • 6.1 二维数组得概念
    • 6.2 二维数组的创建
  • 7. 二维数组的初始化
    • 7.1 不完全初始化
    • 7.2 完全初始化
    • 7.3 按照行初始化
    • 7.4 初始化时省略行,但是不能省略列
  • 8. 二维数组的使用
    • 8.1 二维数组的下标
    • 8.2 二维数组的输入和输出
  • 9. 二维数组在内存中的存储
  • 10. C99中的变长数组
  • 11. 数组练习
    • 练习1:多个字符从两端移动,向中间汇聚
    • 练习2:二分查找


前言

C语言数组是一种用来存储相同类型元素的数据结构,它由一组连续内存空间组成,并且每个元素的大小相同。这些数据按照一个固定的顺序排列。数组可以有一个或多个维度,每个维度的大小必须是正整数。

小编想说:不要害怕追随你的梦想,因为成功只会往那些敢于梦想并且敢于去追求梦想的人身上涌来。只有不停奋斗,才能拥有更美好的未来。希望读者可以在编程这条路上走得越来越远。


1. 数组的概念

数组是一组相同类型元素的集合;从这个概念中我们就可以发现2个有价值的信息:

  • 数组中存放的是1个或者多个数据,但是数组元素个数不能为0。
  • 数组中存放的多个数据,类型是相同的。

数组分为一维数组和多维数组,多维数组一般比较多见的是二维数组。

2. 一维数组的创建和初始化

2.1 数组创建

一维数组创建的基本语法如下:

 type  arr_name[常量值];

存放在数组的值被称为数组的元素,数组在创建的时候可以指定数组的大小和数组的元素类型。

  • type 指定的是数组中存放数据的类型,可以是: char、short、int、float 等,也可以自定义的类型
  • arr_name 指的是数组名的名字,这个名字根据实际情况,起的有意义就行,可以按照变量名称是怎么定义的来定义。

在C语言中,变量名称定义需要遵守以下原则:

  1. 变量名称可以由字母、数字和下划线组成,但不可以以数字开头
  2. 变量名称是区分大小写的,即变量名abcABC是不同的变量。
  3. 变量名称应该具有描述性,能够清晰地表达变量的含义。
  4. 变量名不应该与C语言的关键字(如if, for, int, char等)相同。
  5. 变量名称应该避免使用单个字符作为变量名,除非这个变量是循环计数器或临时变量。
  6. 变量名称应该使用驼峰式大小写或下划线命名法,其中驼峰式大小写是指首单词小写,后续单词首字母大写,例如firstName, lastName;下划线命名法是指单词之间用下划线分隔,例如first_name, last_name
  7. 变量名称应该尽量简洁明了,不要过于复杂。
  • [ ] 中的常量值是用来指定数组的大小的,这个数组的大小是根据实际的需求指定就行。

比如:我们现在想存储某个班级的20人的数学成绩,那我们就可以创建一个数组,如下:

 int math[20];

当然我们也可以根据需要创建其他类型和大小的数组:

char ch[8];
double score[10];

2.2 数组的初始化

有时候,数组在创建的时候,我们需要给定一些初始值值,这种就称为初始化的。
那数组如何初始化呢?数组的初始化一般使用大括号,将数据放在大括号中。

//完全初始化
int arr[5] = {1,2,3,4,5};
//不完全初始化
int arr2[6] = {1};//第⼀个元素初始化为1,剩余的元素默认初始化为0
//错误的初始化 - 初始化项太多
int arr3[3] = {1, 2, 3, 4};

2.3 数组的类型

数组也是有类型的,数组算是一种自定义类型,去掉数组名留下的就是数组的类型。
如下:

int arr1[10];
int arr2[12];
char ch[5];
  • arr1数组的类型是 int [10]
  • arr2数组的类型是 int[12]
  • ch 数组的类型是char [5]

3. 一维数组的使用

学习了一维数组的基本语法,一维数组可以存放数据,存放数据的目的是对数据的操作,那我们如何使用一维数组呢?

3.1 数组下标

C语言规定数组是有下标的,下标是从0开始的,假设数组有n个元素,最后一个元素的下标是n-1,下标就相当于数组元素的编号,如下:

 int arr[10] = {1,2,3,4,5,6,7,8,9,10};
数组元素和下标

在这里插入图片描述
在C语言中数组的访问提供了一个操作符 [ ] ,这个操作符叫:下标引用操作符。

有了下标访问操作符,我们就可以轻松的访问到数组的元素了,比如我们访问下标为7的元素,我们就可以使用 arr[7] ,想要访问下标是3的元素,就可以使用 arr[3] ,如下代码:

#include <stdio.h>
int main()
{
	int arr[10] = {1,2,3,4,5,6,7,8,9,10};
	printf("%d\n", arr[7]);//8
	printf("%d\n", arr[3]);//4
	return 0;
}

输出结果:
在这里插入图片描述

3.2 数组元素的打印

接下来,如果想要访问整个数组的内容,那怎么办呢?
只要我们产生数组所有元素的下标就可以了,那我们使用for循环产生0~9的下标,接下来使用下标访问就行了。
如下代码:

#include <stdio.h>
int main()
{
	int arr[10] = {1,2,3,4,5,6,7,8,9,10};
	int i = 0;
	for(i=0; i<10; i++)
    {
   		printf("%d ", arr[i]);
     }
	return 0;
}

输出的结果:
在这里插入图片描述

3.3 数组的输入

明白了数组的访问,当然我们也根据需求,自己给数组输入想要的数据,如下:

#include <stdio.h>
int main()
{
	int arr[10] = {1,2,3,4,5,6,7,8,9,10};
	int i = 0;
	for(i=0; i<10; i++)
    {
    	scanf("%d", &arr[i]);
     }
	for(i=0; i<10; i++)
    {
    	printf("%d ", arr[i]);    
    }
	return 0;
}

输入和输出结果:
在这里插入图片描述

4. 一维数组在内存中的存储

有了前面的知识,我们其实使用数组基本没有什么障碍了,如果我们要深入了解数组,我们最好能了解一下数组在内存中的存储。
依次打印数组元素的地址:

#include <stdio.h>
int main()
{
	int arr[10] = {1,2,3,4,5,6,7,8,9,10};
	int i = 0;
	for(i=0; i<10; i++)
    {
    	printf("&arr[%d] = %p\n ", i, &arr[i]);    
    }
	return 0;
}

输出结果:
在这里插入图片描述
从输出的结果我们分析,数组随着下标的增长,地址是由小到大变化的,并且我们发现每两个相邻的元素之间相差4(因为一个整型是4个字节)。所以我们得出结论:数组在内存中是连续存放的。

数组元素在内存中是连续存放的

在这里插入图片描述
栈区的默认使用,是先使用高地址的空间,在使用低地址的空间,数组在系统空间中的存放,在系统空间中,VS2022会先根据你定义的数组范围定义一段空间,然后按照这段空间从高地址向下排,在数组空间内,里面的元素是从低地址向高地址来排序的。
在这里插入图片描述

5. sizeof计算数组元素个数

在遍历数组的时候,我们经常想知道数组的元素个数,那C语言中有办法使用程序计算数组元素个数吗?
答案是有的,可以使用sizeof。
比如:

#include <stido.h>
int main()
{
	int arr[10] = {0};
	printf("%d\n", sizeof(arr));
	return 0;
}

这里输出的结果是40,计算的是数组所占内存空间的总大小,单位是字节。
我们又知道数组中所有元素的类型都是相同的,那只要计算出一个元素所占字节的个数,数组的元素个数就能算出来。这里我们选择第一个元素算大小就可以。

#include <stido.h>
int main()
{
	int arr[10] = {0};
	printf("%d\n", sizeof(arr[0]));//计算⼀个元素的⼤⼩,单位是字节
	return 0;
}

接下来就能计算出数组的元素个数:

#include <stido.h>
int main()
{
	int arr[10] = {0};
	int sz = sizeof(arr)/sizeof(arr[0]);
	printf("%d\n", sz);
	return 0;
}

这里的结果是:10,表示数组有10个元素。
除此之外我们还可以使用strlen()函数,strlen()函数是包含在string.h头文件里的库函数,在使用前需要引用头文件。

#include <stido.h>
#include <string.h>
int main()
{
	int arr[10] = {0};
	printf("%d\n", strlen(arr));
	return 0;
}

6. 二维数组的创建

6.1 二维数组得概念

前面学习的数组被称为一维数组,数组的元素都是内置类型的,如果我们把一维数组做为数组的元 素,这时候就是二维数组,二维数组作为数组元素的数组被称为三维数组,二维数组以上的数组统称为多维数组。

整型、整型⼀维数组、整型⼆维数组

在这里插入图片描述

6.2 二维数组的创建

那我们如何定义二维数组呢?语法如下:

type arr_name[常量值1][常量值2];

例如:
int arr[3][5];
double data[2][8];

解释:上述代码中出现的信息

  • 3表示数组有3行
  • 5表示每⼀行有5个元素
  • int 表示数组的每个元素是整型类型
  • arr 是数组名,可以根据自己的需要指定名字

其他类型的数组意思基本⼀致。

7. 二维数组的初始化

在创建变量或者数组的时候,给定一些初始值,被称为初始化。 那二维数组如何初始化呢?像一维数组一样,也是使用大括号初始化的。

7.1 不完全初始化

int arr1[3][5] = {1,2};
int arr2[3][5] = {0};

在这里插入图片描述

7.2 完全初始化

 int arr3[3][5] = {1,2,3,4,5, 2,3,4,5,6, 3,4,5,6,7};

在这里插入图片描述

7.3 按照行初始化

 int arr4[3][5] = {{1,2},{3,4},{5,6}};

在这里插入图片描述

7.4 初始化时省略行,但是不能省略列

int arr5[][5] = {1,2,3};
int arr6[][5] = {1,2,3,4,5,6,7};
int arr7[][5] = {{1,2}, {3,4}, {5,6}};

在这里插入图片描述

8. 二维数组的使用

8.1 二维数组的下标

当我们掌握了二维数组的创建和初始化,那我们怎么使用二维数组呢? 其实二维数组访问也是使用下标的形式的,二维数组是有行和列的,只要锁定了行和列就能唯一锁定数组中的一个元素。
C语言规定,二维数组的行是从0开始的,列也是从0开始的,如下所示:

 int arr[3][5] = {1,2,3,4,5, 2,3,4,5,6, 3,4,5,6,7};

在这里插入图片描述
图中最右侧绿色的数字表示行号,第一行蓝色的数字表示列号,都是从0开始的,比如,我们说:第2 行,第4列,快速就能定位出7。

#include <stdio.h>
int main()
{
	int arr[3][5] = {1,2,3,4,5, 2,3,4,5,6, 3,4,5,6,7};
	printf("%d\n", arr[2][4]);
	return 0;
}

输出的结果如下:
在这里插入图片描述

8.2 二维数组的输入和输出

访问二维数组的单个元素我们知道了,那如何访问整个二维数组呢? 其实我们只要能够按照一定的规律产生所有的行和列的数字就行;以上一段代码中的arr数组为例,行的选择范围是0 ~ 2,列的取值范围是0~4,所以我们可以借助循环实现生成所有的下标。

#include <stdio.h>
int main()
{
	int arr[3][5] = {1,2,3,4,5, 2,3,4,5,6, 3,4,5,6,7};
	int i = 0;//遍历⾏
	//输⼊
	for(i=0; i<3; i++) //产⽣⾏号
    {
    	int j = 0;
		for(j=0; j<5; j++) //产⽣列号
		{
			scanf("%d", &arr[i][j]); //输⼊数据      
		}
    }
		//输出
	for(i=0; i<3; i++) //产⽣⾏号
   	{
   	 	int j = 0;
		for(j=0; j<5; j++) //产⽣列号
		{
			printf("%d ", arr[i][j]); //输出数据
		}
		printf("\n");
    }
	return 0;
}

输入和输出的结果:
在这里插入图片描述

9. 二维数组在内存中的存储

像一维数组一样,我们如果想研究二维数组在内存中的存储方式,我们也是可以打印出数组所有元素的地址的。
代码如下:

#include <stdio.h>
int main()
{
	int arr[3][5] = { 0 };
	int i = 0;
	int j = 0;
	for (i = 0; i < 3; i++)
    {
    	for (j = 0; j < 5; j++)
   	 	{
   	 		printf("&arr[%d][%d] = %p\n", i, j, &arr[i][j]);       
   	 	 }
    }
	return 0;
}

输出的结果:
在这里插入图片描述
从输出的结果来看,每一行内部的每个元素都是相邻的,地址之间相差4个字节,跨行位置处的两个元素(如:arr[0][4]arr[1][0])之间也是差4个字节,所以二维数组中的每个元素都是连续存放的。
如下图所示:

⼆维数组的每⼀行在内存中连续存放

在这里插入图片描述
了解清楚二维数组在内存中的布局,有利于我们后期使用指针来访问数组的学习。

10. C99中的变长数组

在C99标准之前,C语言在创建数组的时候,数组大小的指定只能使用常量、常量表达式,或者如果我们初始化数据的话,可以省略数组大小。
如:

int arr1[10];
int arr2[3+5];
int arr3[] = {1,2,3};

这样的语法限制,让我们创建数组就不够灵活,有时候数组太大了浪费空间,有时候数组又小了不够用的。
C99中给一个变长数组(variable-length array,简称 VLA)的新特性,允许我们可以使用变量指定数组大小。
请看下面的代码:

int n = a+b;
int arr[n];

上面示例中,数组 arr 就是变长数组,因为它的长度取决于变量 n 的值,编译器没法事先确定,只 有运行时才能知道 n 是多少。
变长数组的根本特征,就是数组长度只有运行时才能确定,所以变长数组不能初始化。它的好处是程序员不必在开发时,随意为数组指定一个估计的长度,程序可以在运行时为数组分配精确的长度。有 一个比较迷惑的点,变长数组的意思是数组的大小是可以使用变量来指定的,在程序运行的时候,根 据变量的大小来指定数组的元素个数,而不是说数组的大小是可变的。数组的大小一旦确定就不能再变化了。
遗憾的是在VS2022上,虽然支持大部分C99的语法,没有支持C99中的变长数组,没法测试;下面是我在gcc编译器上测试,可以看一下。

  • 我们可以在VS code 导入c语言模块,通过这个模块来使用gcc编译
  • 我们也可以直接在Dev-C++使用,Dev-C++使用的就是gcc编译
#include <stdio.h>
int main()
{
	int n = 0;
	scanf("%d", &n);//根据输⼊数值确定数组的⼤⼩
	int arr[n];
	int i = 0;
	for (i = 0; i < n; i++)
    {
    	scanf("%d", &arr[i]);    
    }
	for (i = 0; i < n; i++)
    {
    	printf("%d ", arr[i]);    
    }
	return 0;
}

第⼀次测试,我给n中输入5,然后输入5个数字在数组中,并正常输出
第⼆次测试,我给n中输入10,然后输入10个数字在数组中,并正常输出
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

11. 数组练习

练习1:多个字符从两端移动,向中间汇聚

编写代码,演示多个字符从两端移动,向中间汇聚

#include <stdio.h>
#include <string.h>//strlen函数
#include <Windows.h>//Sleep函数
int main()
{
	char arr1[] = "welcome to bit...";
	char arr2[] = "#################";
	int left = 0;
	int right = strlen(arr1)-1;
	printf("%s\n", arr2);
	while(left<=right)
    {
        Sleep(1000);//睡眠函数
        arr2[left] = arr1[left];
        arr2[right] = arr1[right];
        left++;
        right--;
        printf("%s\n", arr2);
     }
    retutn 0;
}

练习2:二分查找

在⼀个升序的数组中查找指定的数字n,很容易想到的方法就是遍历数组,但是这种方法效率比较低。
比如我买了⼀双鞋,你好奇问我多少钱,我说不超过300元。你还是好奇,你想知道到底多少,我就让你猜,你会怎么猜?你会1,2,3,4…这样猜吗?显然很慢;⼀般你都会猜中间数字,比如:150,然后看大了还是小了,这就是二分查找,也叫折半查找。

#include <stdio.h>
int main()
{
	int arr[] = {1,2,3,4,5,6,7,8,9,10};
	int left = 0;
	int right = sizeof(arr)/sizeof(arr[0])-1;
	int key = 7;//要找的数字
	int mid = 0;//记录中间元素的下标
	int find = 0;
	while(left<=right)
    {
        mid = (left+right)/2;
        if(arr[mid]>key)
        {
         	right = mid-1;
        }
        else if(arr[mid] < key)
        {
        	left = mid+1;
        }
        else
        {
            find = 1;
            break;
        }
    }
	if(1 == find )
	printf("找到了,下标是%d\n", mid);
	else
	printf("找不到\n");
}

求中间元素的下标,使用 mid = (left+right)/2 ,如果left和right比较大小的时候可能存在问题,可以使用下面的方式:

 mid = left+(right-left)/2;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/106684.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DAY36 738.单调递增的数字 + 968.监控二叉树

738.单调递增的数字 题目要求&#xff1a;给定一个非负整数 N&#xff0c;找出小于或等于 N 的最大的整数&#xff0c;同时这个整数需要满足其各个位数上的数字是单调递增。 &#xff08;当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单…

vue3 源码解析(2)— ref、toRef、toRefs、shallowRef 响应式的实现

前言 vue3 源码解析&#xff08;1&#xff09;— reactive 响应式实现 介绍完 reactive 之后还有另一个很重要的响应式API&#xff0c;其中包括 ref、toRef、toRefs 和 shallowRef。这些API在vue3中起着至关重要的作用&#xff0c;它们帮助我们更好地管理和跟踪响应式数据的变…

一文搞懂 MineCraft 服务器启动操作和常见问题 2023年10月

文章目录 前言1. 新建文件夹2. 创建 bat 文件3. 编辑 bat 文件4. 启动服务器5. 恭喜完成 文章持续更新中&#xff0c;如果你有问题可以通过 qq 1317699264 获取免费协助&#xff0c;解决的问题将会被更新到本文章中 前言 无论你是使用服务端整合包&#xff0c;还是从上一篇我的…

基本选择器

目录 1 标签选择器 2 类选择器 3 id选择器 作用&#xff1a;选择页面上的某一个或某一类元素 1 标签选择器 标签选择器会选择页面上所有的标签 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>…

Spigot 通过 BuildTools 构建 MineCraft Spigot 官方服务端文件

文章目录 从 Spigot 官方下载 BuildTools spigotmc / buildtools确保你有正确版本的 Java&#xff08;例如构建 1.20.2 的服务端一般需要有 Java17&#xff09;在 BuildTools.jar 同名文件夹打开 cmd 命令行&#xff08;点击红色圈圈区域输入 cmd 按 enter 即可&#xff09; …

【黑产攻防道03】利用JS参数更新检测黑产的协议破解

任何业务在运营一段时间之后都会面临黑产大量的破解。验证码和各种爬虫的关系就像猫和老鼠一样, 会永远持续地进行博弈。极验根据十一年和黑产博弈对抗的经验&#xff0c;将黑产的破解方式分为三类&#xff1a; 1.通过识别出验证码图片答案实现批量破解验证&#xff0c;即图片…

区块链技术的未来:去中心化应用和NFT的崛起

区块链技术正在以前所未有的速度改变着金融和数字资产领域。它的演进为去中心化应用和非替代性代币&#xff08;NFT&#xff09;的崛起提供了坚实的基础。在本文中&#xff0c;我们将深入探讨这一数字革命的关键方面&#xff0c;从区块链的基本原理到它如何改变金融领域&#x…

使用Jetpack Compose构建Flappy Musketeer街机游戏

使用Jetpack Compose构建Flappy Musketeer街机游戏 一步一步创建沉浸式移动游戏的指南 引言 Flappy Musketeer不仅是又一个移动游戏&#xff1b;它将令人上瘾的“轻点飞行”游戏玩法和引人入胜的视觉效果融合在一起&#xff0c;吸引玩家进入埃隆马斯克&#xff08;Elon Musk…

Transformer英语-法语机器翻译实例

依照Transformer结构来实例化编码器&#xff0d;解码器模型。在这里&#xff0c;指定Transformer编码器和解码器都是2层&#xff0c;都使用4头注意力。为了进行序列到序列的学习&#xff0c;我们在英语-法语机器翻译数据集上训练Transformer模型&#xff0c;如图11.2所示。 da…

网络协议--DNS:域名系统

14.1 引言 域名系统&#xff08;DNS&#xff09;是一种用于TCP/IP应用程序的分布式数据库&#xff0c;它提供主机名字和IP地址之间的转换及有关电子邮件的选路信息。这里提到的分布式是指在Internet上的单个站点不能拥有所有的信息。每个站点&#xff08;如大学中的系、校园、…

工业4.0的安全挑战与解决方案

在当今数字化时代&#xff0c;工业4.0已经成为制造业的核心趋势。工业4.0的兴起为生产企业带来了前所未有的效率和灵活性&#xff0c;但与之伴随而来的是一系列的安全挑战。本文将深入探讨工业4.0的安全挑战&#xff0c;并提供一些解决方案&#xff0c;以确保制造业的数字化转型…

Typora(morkdown编辑器)的安装包和安装教程

Typora&#xff08;morkdown编辑器&#xff09;的安装包和安装教程 下载安装1、覆盖文件2、输入序列号①打开 typora &#xff0c;点击“输入序列号”&#xff1a;②邮箱一栏中任意填写&#xff08;但须保证邮箱地址格式正确&#xff09;&#xff0c;输入序列号&#xff0c;点击…

JS中面向对象的程序设计

面向对象&#xff08;Object-Oriented&#xff0c;OO&#xff09;的语言有一个标志&#xff0c;那就是它们都有类的概念&#xff0c;而通过类可以创建任意多个具有相同属性和方法的对象。但在ECMAScript 中没有类的概念&#xff0c;因此它的对象也与基于类的语言中的对象有所不…

order by数据过多引起的cpu飙升

测试环境 1.目前数据库类型为pg数据库2.目前数据库业务为共享数据库,为减少其他业务对本次测试的影响,故选在业务空闲时间执行3.服务器性能为8C 32GB 500GB硬盘 原程序测试结果 优化后程序结果 出现原因 当数据量大时&#xff0c;order by排序操作会消耗大量的CPU资源&#…

数据结构之队列

什么是队列&#xff1f; 队列这个概念非常好理解。你可以把它想象成排队买票&#xff0c;先来的先买&#xff0c;后来的人只能站末尾&#xff0c;不允许插队。先进者先出&#xff0c;这就是典型的“队列”。 我们知道&#xff0c;栈只支持两个基本操作&#xff1a;入栈 push()…

Spring Session框架

Spring Session框架 前言 Spring Session是一个用于在分布式环境中管理会话的框架。它提供了一种无状态的方式来管理用户会话&#xff0c;使得应用程序可以在不同的服务器之间共享会话数据。Spring Session的设计目标是为了解决传统基于Servlet容器的会话管理的局限性&#xf…

【ARM 嵌入式 C 入门及渐进 10 -- 冒泡排序 选择排序 插入排序 快速排序 归并排序 堆排序 比较介绍】

文章目录 排序算法小结排序算法C实现 排序算法小结 C语言中常用的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。下面我们来一一介绍&#xff1a; 冒泡排序&#xff08;Bubble Sort&#xff09;&#xff1a;冒泡排序是通过比较相邻元素的大小进行排…

(el-Table)操作(不使用 ts):Element-plus 中 Table 多选框的样式等的调整

Ⅰ、Element-plus 提供的 Table 表格组件与想要目标情况的对比&#xff1a; 1、Element-plus 提供 Table 组件情况&#xff1a; 其一、Element-ui 自提供的 Table 代码情况为(示例的代码)&#xff1a; // Element-plus 自提供的代码&#xff1a; // 此时是使用了 ts 语言环境…

大语言模型(LLM)综述(四):如何适应预训练后的大语言模型

A Survey of Large Language Models 前言5. ADAPTATION OF LLMS5.1 指导调优5.1.1 格式化实例构建5.1.2 指导调优策略5.1.3 指导调优的效果5.1.4 指导调优的实证分析 5.2 对齐调优5.2.1 Alignment的背景和标准5.2.2 收集人类反馈5.2.3 根据人类反馈进行强化学习5.2.4 无需 RLHF…

Leetcode. 2866.美丽塔II

要求O&#xff08;N&#xff09;复杂度内解决&#xff0c;考虑单调栈&#xff0c;这个题很像经典的美丽度的那个单调栈的模板题 对有每一个位置&#xff0c;考虑右边能扩展到哪来&#xff1f;不如直接从末尾来倒着看&#xff0c;发现从末尾需要维护一个单调增的单调栈&#xff…