零基础Linux_22(多线程)线程控制和和C++的多线程和笔试选择题

目录

1. 线程控制

1.1 线程创建(pthread_create)

1.2 线程结束(pthread_exit)

1.3 线程等待(pthread_join)

1.4 线程取消(pthread_cancel结束)

1.5 线程tid(pthread_self())

1.6 线程局部存储(__thread)

1.7 线程分离(pthread_detach)

2. C++的多线程

3. 笔试选择题

答案及解析

本篇完。


1. 线程控制

上一篇讲了线程/轻量级进程的概念,这篇讲讲线程的控制:退出,等待......

1.1 线程创建(pthread_create)

线程创建上一篇已经讲过了:

 创建线程使用到的库函数接口,man pthread_create

  • pthread_t* thread:线程标识符tid,是一个输出型参数。
  • const pthread_attr_t* attr:线程属性,当前阶段一律设成nullptr。
  • void* (*start_routine)(void *):是一个函数指针,线程执行的就是该函数中的代码。
  • void* arg:传给线程启动函数的参数,是上面函数指针指向函数的形参。
  • 返回值:线程创建成功返回0,失败返回错误码。

看一下上篇出现线程异常的场景:

#include <iostream>
#include <unistd.h>
#include <pthread.h>
using namespace std;

void *threadRun(void *args)
{
    const string name = (char *)args;
    while (true)
    {
        cout << name << ", pid: " << getpid() << endl;
        sleep(1);
        static int cnt = 0;
        if (cnt++ == 7)
        {
            int *p = nullptr;
            *p = 777;
        }
    }
}

int main()
{
    pthread_t tid[5];
    char name[64];
    for (int i = 0; i < 5; i++)
    {
        snprintf(name, sizeof(name), "%s-%d", "thread", i); // 特定内容格式化到name中
        pthread_create(tid + i, nullptr, threadRun, (void *)name);
        sleep(1); // 缓解传参的bug
    }

    while (true)
    {
        cout << "main thread, pid: " << getpid() << endl;
        sleep(1);
    }
    return 0;
}

出现异常全部线程都退出了,有没有办法只让其中一个线程退出?

试试exit();

#include <iostream>
#include <unistd.h>
#include <pthread.h>
using namespace std;

void *threadRun(void *args)
{
    const string name = (char *)args;
    while (true)
    {
        cout << name << ", pid: " << getpid() << endl;
        sleep(1);
        static int cnt = 0;
        if (cnt++ == 7)
        {
            // int *p = nullptr;
            // *p = 777;
            exit(10);
        }
    }
}

int main()
{
    pthread_t tid[5];
    char name[64];
    for (int i = 0; i < 5; i++)
    {
        snprintf(name, sizeof(name), "%s-%d", "thread", i); // 特定内容格式化到name中
        pthread_create(tid + i, nullptr, threadRun, (void *)name);
        sleep(1); // 缓解传参的bug
    }

    while (true)
    {
        cout << "main thread, pid: " << getpid() << endl;
        sleep(1);
    }
    return 0;
}

还是全部线程都退出了,这也再次认识了exit();就是终止进程的,所以不建议用。
 

1.2 线程结束(pthread_exit)

基于前面,我们的threadRun函数还有个是函数指针的返回值,返回个空指针试试:

可以发现名字为thread-1的线程好像退出了,其它线程没退出,就创建一个新线程看看:

#include <iostream>
#include <unistd.h>
#include <pthread.h>
using namespace std;

void *threadRun(void *args)
{
    const string name = (char *)args;
    while (true)
    {
        cout << name << ", pid: " << getpid() << endl;
        sleep(1);
        static int cnt = 0;
        if (cnt++ == 7)
        {
            // int *p = nullptr;
            // *p = 777;
            // exit(10);
            return nullptr;
        }
    }
}

int main()
{
    // pthread_t tid[5];
    // char name[64];
    // for (int i = 0; i < 5; i++)
    // {
    //     snprintf(name, sizeof(name), "%s-%d", "thread", i); // 特定内容格式化到name中
    //     pthread_create(tid + i, nullptr, threadRun, (void *)name);
    //     sleep(1); // 缓解传参的bug
    // }
    pthread_t tid;
    pthread_create(&tid, nullptr, threadRun, (void*)"thread 1");

    while (true)
    {
        cout << "main thread, pid: " << getpid() << endl;
        sleep(1);
    }
    return 0;
}

可以发现新线程退出了,主线程还没退出。

POSIX线程库专门提供了一个接口来结束线程:pthread_exit()结束线程,man pthread_exit

  • void* retval:返回线程结束信息,当前阶段设置成nullptr即可。

调用该接口的线程会结束。

#include <iostream>
#include <unistd.h>
#include <pthread.h>
using namespace std;

void *threadRun(void *args)
{
    const string name = (char *)args;
    while (true)
    {
        cout << name << ", pid: " << getpid() << endl;
        sleep(1);
        static int cnt = 0;
        if (cnt++ == 7)
        {
            // int *p = nullptr;
            // *p = 777;
            // exit(10);

            //return nullptr;
            pthread_exit(nullptr);
        }
    }
}

int main()
{
    // pthread_t tid[5];
    // char name[64];
    // for (int i = 0; i < 5; i++)
    // {
    //     snprintf(name, sizeof(name), "%s-%d", "thread", i); // 特定内容格式化到name中
    //     pthread_create(tid + i, nullptr, threadRun, (void *)name);
    //     sleep(1); // 缓解传参的bug
    // }
    pthread_t tid;
    pthread_create(&tid, nullptr, threadRun, (void*)"thread 1");

    while (true)
    {
        cout << "main thread, pid: " << getpid() << endl;
        sleep(1);
    }
    return 0;
}

同样,7秒后,新线程会调用该接口,然后就只剩下主线程了,新线程结束了。

1.3 线程等待(pthread_join)

和进程一样,线程也是需要等待的,如果不等待会造成内存泄漏,也就是结束掉的线程PCB不会被回收(类似僵尸进程),但是我们看不到没有回收的现象。

线程等待系统调用:

  • 第一个参数pthread_t thread:要等待的线程tid。
  • 第二个参数void** retval:线程结束的信息返回,这是一个输出型参数。
  • 返回值:等待成功返回0,等待失败返回错误码。

演示一下使用:

#include <iostream>
#include <unistd.h>
#include <pthread.h>
using namespace std;

void *threadRun(void *args)
{
    const string name = (char *)args;
    while (true)
    {
        cout << name << ", pid: " << getpid() << endl;
        sleep(1);
        static int cnt = 0;
        if (cnt++ == 7)
        {
            pthread_exit((void*)777);
        }
    }
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, threadRun, (void*)"thread 1");

    int *ret = nullptr;
    pthread_join(tid, (void **)&ret); // 默认会阻塞等待新线程退出
    cout << "main quit ...: new thead quit : " << (long long)ret << endl;
    // linux下64位的,指针是8个字节,所以强转成long long 8个字节
    while (true)
    {
        cout << "main thread, pid: " << getpid() << endl;
        sleep(1);
    }
    return 0;
}

可以看到,主线程在执行到线程等待的时候,会阻塞等待,不再往下执行,直到新线程都等待成功才会继续向下执行。

在主线程的栈区中有一个void类型的指针变量,新线程中返回的void类型指针会放到这个ret中。

  • pthread线程库中有一个void** 类型的二级指针变量retval。
  • pthread_join()系统调用将主线程中void*类型的指针变量的地址传给了pthread线程库中的二级指针变量,此时主线程就和线程库建立了联系。
  • 将新线程中返回到线程库中的void*指针变量中的返回值,通过这种联系放到主线程中指针变量中----也就是 *retval = ret。

这样,我们就可以成功的获取到新线程退出时的返回信息了,桥梁就是pthread_join()系统调用。

在学习进程等待的时候,我们不仅可以获得进程的退出信息,还能获得进程的退出信号,但是在线程退出时就没有获得线程退出信号,这是为什么呢?

因为信号是发给进程的,整个进程都会被退出,线程要退出信号也没有意义了。

而且pthread_join默认是能够等待成功的,并不考虑异常的问题,异常是进程要考虑的事,线程不用考虑。

1.4 线程取消(pthread_cancel结束)

Linux提供了线程结束的其它方式:线程取消,线程取消的接口:

  • 参数:要取消的线程tid。
  • 返回值:取消成功返回0,失败返回错误码。
#include <iostream>
#include <unistd.h>
#include <pthread.h>
using namespace std;

void *threadRun(void *args)
{
    const string name = (char *)args;
    while (true)
    {
        cout << name << ", pid: " << getpid() << endl;
        sleep(1);
    }
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, threadRun, (void*)"thread 1");
    int cnt = 0;
    while (true)
    {
        cout << "main thread, pid: " << getpid() << endl;
        sleep(1);
        if(cnt++ == 5)
        {
            break;
        }
    }

    pthread_cancel(tid);
    cout << "pthread cancel: " << tid << endl;

    int *ret = nullptr;
    pthread_join(tid, (void **)&ret); // 默认会阻塞等待新线程退出
    cout << "main quit ...: new thead quit : " << (long long)ret << endl;
    // linux下64位的,指针是8个字节,所以强转成long long 8个字节
    return 0;
}

可以看见,如果一个线程是被取消结束的,它的退出码就是-1。它其实是一个宏定义:#defin PTHREAD_CANCELED -1。

线程取消也是一种线程结束的方式,放在这里是为了能够通过线程等待看线程退出的退出码。

1.5 线程tid(pthread_self())

有没有看见退出得到的tid是一个很大的整数?这个整数实际上是一个地址。

我们还可以通过系统接口pthread_self在上面代码基础上打印自己的tid:

tid的值是一个地址。

我们知道,Linux内核中是没有线程概念的,也没有对应的TCB结构。

  • 用户创建线程时使用的是POSIX线程库提供的接口。
  • 线程库中会调用clone()系统调用接口,在内核中创建线程复用的PCB结构。
  • 这些轻量级进程共用一个进程地址空间。

系统中肯定不只一个线程存在,大量的线程势必要管理起来,管理的方式同样是先描述再组织。既然Linux内核中只有轻量级进程的PCB,那么描述线程的TCB结构就只能存在于线程库中

线程库中的TCB里,存放着线程的属性,这里的TCB被叫做用户级线程

Linux线程方案:用户级线程和用户关心的线程属性都在线程库中,内核提供线程执行流的调度。

一个线程的所有属性描述是由两部组成的,一部分就是在pthread线程库中的用户级线程,另一部分就是Linux中的轻量级进程,它们俩的比例大约是1比1。

pthread线程库从磁盘上加载到内存中后,通过页表再将虚拟地址空间和物理地址映射起来。

线程库最终是映射在虚拟地址空间中的共享区中的mmap区域。

线程库是映射在共享区的,那么线程库所维护的TCB结构也就一定在共享区。

如上图所示,将映射到共享区的动态线程库放大。

线程库中存在多个TCB结构来描述线程。每个TCB的地址就是线程id。

线程tid的本质就是虚拟地址共享区中TCB结构体的地址

线程的栈也在共享区中,而不在栈中。

虚拟地址空间中的栈是主线程的栈,共享区中动态库中的栈是新线程的栈。

所以说,线程的栈结构是相互独立的,因为存在于不同的TCB中(主线程除外)

1.6 线程局部存储(__thread)

在共享区线程库中的TCB里,有一个线程的局部存储属性,它是一个介于全局变量和局部变量之间线程特有的属性。

#include <iostream>
#include <unistd.h>
#include <pthread.h>
using namespace std;

int g_val = 0;

void *threadRun(void *args)
{
    const string name = (char *)args;
    while (true)
    {
        //cout << name << ", pid: " << getpid() << " tid: " << pthread_self() << endl;
        cout << name << " -> g_val: " << g_val++ << " &g_val: " << &g_val << endl;
        sleep(1);
    }
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, threadRun, (void*)"thread 1");
    int cnt = 0;
    while (true)
    {
        cout << "main thread -> g_val: " << g_val++ << " &g_val: " << &g_val << endl;
        sleep(1);
        if(cnt++ == 5)
        {
            break;
        }
    }

    pthread_cancel(tid);
    cout << "pthread cancel: " << tid << endl;

    int *ret = nullptr;
    pthread_join(tid, (void **)&ret); // 默认会阻塞等待新线程退出
    cout << "main quit ...: new thead quit : " << (long long)ret << endl;
    // linux下64位的,指针是8个字节,所以强转成long long 8个字节
    return 0;
}

主线程和新线程打印的地址都是一样的,说明主线程和新线程共用一个全局变量。

那如果此时新线程仍然想用这个变量名,但是又不想影响其他线程,也就是让这个全局变量独立出来,该怎么办呢?此时就可以使用线程的局部存储属性了。

全局变量g_val前面加__thread(两个下划线),此时这个全局变量就具有了局部存储的属性。

主线程和新线程打印出来的全局变量的地址不相同了,说明此时用的并不是同一个全局变量。

而且新线程修改这个值,主线程不受影响。

将全局变量或者static变量添加 __thread,设置位线程局部存储。

此时每个线程的TCB中都会有一份该变量,相互独立,并不会互相影响。

1.7 线程分离(pthread_detach)

前面线程等待的时候,主线程就需要阻塞式等待线程的释放,主线程什么都干不了。能不能像进程那样不需要阻塞式等待(将SIGCHID信号设置为忽略),等新线程结束以后自动释放呢?(尤其是不需要关心线程返回值的时候,join是一种负担。)

当然可以,将需要自动释放的线程设置成分离状态,将线程设置成分离状态意味着不需要主线程再关心该线程的状态,它会自动释放。

线程分离的接口:man pthread_detach:

  • 参数 pthread_t thread:要分离的线程tid。
  • 返回值 int:成功返回0,不成功返回错误码。

可以是线程组内其他线程对目标线程进行分离,但一般是线程自己分离自己:

#include <iostream>
#include <cerrno>
#include <cstring>
#include <unistd.h>
#include <pthread.h>
using namespace std;

__thread int g_val = 0;

void *threadRun(void *args)
{
    pthread_detach(pthread_self());

    const string name = (char *)args;
    while (true)
    {
        //cout << name << ", pid: " << getpid() << " tid: " << pthread_self() << endl;
        cout << name << " -> g_val: " << g_val++ << " &g_val: " << &g_val << endl;
        sleep(5);
        pthread_exit((void*)777);
    }
}

int main()
{
    pthread_t tid;
    pthread_create(&tid, nullptr, threadRun, (void*)"thread 1");
    int cnt = 0;
    while (true)
    {
        cout << "main thread -> g_val: " << g_val++ << " &g_val: " << &g_val << endl;
        sleep(1);
        if(cnt++ == 5)
        {
            break;
        }
    }

    int *ret = nullptr; // 新线程自己分离了,但是主线程非要等待呢?
    int n = pthread_join(tid, (void **)&ret); // 默认会阻塞等待新线程退出
    if(n == 0)
    {
        cout << "main quit ...: new thead quit : " << (long long)ret << endl;
    }
    else
    {
        cout << "n :" << n << "errstring: " << strerror(n) << endl;
    }
    // linux下64位的,指针是8个字节,所以强转成long long 8个字节
    return 0;
}

可以看到,此时主线程在进行线程等待的时候就会失败,而且返回错误码。

2. C++的多线程

C++也是可以多线程编程的,而且提供了多线程的库,而无论什么编程语言,什么库,在Linux系统上的多线程本质上都是对pthread原生线程库的封装

简单演示一下:

Makefile:

mythread:mythread.cc
	g++ -o $@ $^ -std=c++11
.PHONY:clean
clean:
	rm -f mythread

mythread.cc:

#include <iostream>
#include <thread>
#include <unistd.h>
using namespace std;

void fun()
{
    while(true)
    {
        cout << "hello new thread" << endl;
        sleep(1);
    }
}

int main()
{
    std::thread t(fun);
    std::thread t1(fun);
    std::thread t2(fun);
    std::thread t3(fun);
    std::thread t4(fun);

    while(true)
    {
        cout << "hello main thread" << endl;
        sleep(1);
    }

    t.join();
}

此时就发现运行不了了,改下Makefile:

mythread:mythread.cc
	g++ -o $@ $^ -std=c++11 -lpthread
.PHONY:clean
clean:
	rm -f mythread

此时程序就能正常运行了,演示这个主要为了说明无论什么编程语言,什么库,在Linux系统上的多线程本质上都是对pthread原生线程库的封装

3. 笔试选择题

1. 进程和线程是操作系统中最基本的概念,下列有关描述错误的是 ( ) 

A.进程是程序的一次执行,而线程可以理解为程序中运行的一个片段

B.由于线程没有独立的地址空间,同一个进程的一组线程可以共享访问大部分该进程资源,这些线程之间的通信很高效

C.线程之间的通信简单(共享了虚拟地址空间及页表,因此函数传参以及全局变量即可实现通信),而不同进程之间的通信更为复杂,通常需要调用内核实现

D.线程有独立的虚拟地址空间,但是拥有的资源相对进程来说,只有运行所必须的栈,寄存器等

2. 多线程中栈与堆的基本情况是 () 

A.多个线程共有一个栈,各自有一个堆

B.多个线程共有一个栈, 共有一个堆

C.多个线程各自有一个栈,共有一个堆

D.多个线程各自有一个栈, 各自有一个堆

3. 下面关于线程的叙述中,正确的是()

A.不论是系统支持线程还是用户级线程,其切换都需要内核的支持

B.线程是资源的分配单位,进程是调度和分配的单位

C.不管系统中是否有线程,进程都是拥有资源的独立单位

D.在引入线程的系统中,进程仍是资源分配和调度分派的基本单位

4. 下面有关线程的说法错误的是?[多选]

A.每个线程有自己独立的地址空间

B.耗时的操作使用线程,提高应用程序响应

C.多CPU系统中,使用线程提高CPU利用率

D.线程包含CPU现场,可以独立执行程序

5 .关于进程和线程,下列说法正确的是___[多选]

A.线程是资源分配和拥有的单位

B.线程和进程都可并发执行

C.在linux系统中,线程是处理器调度的基本单位

D.线程的粒度小于进程,占用资源更少,因此通常多线程比多进程并发性更高

E.不同的线程共享相同的栈空间

6. 下述有关Linux进程和线程的描述,正确的有?[多选] 

A.在linux 中,进程比线程安全的原因是进程之间不会共享数据

B.进程有独立的地址空间,线程没有单独的地址空间(同一进程内的线程共享进程的地址空间)

C.进程——资源分配的最小单位,线程——程序执行的最小单位

D.进程和线程都有单独的地址空间

7. 关于多线程和多线程编程,以下哪些说法正确的()[多选]

A.多进程之间的数据共享比多线程编程复杂

B.多线程的创建,切换,销毁速度快于多进程

C.对于大量的计算优先使用多进程

D.多线程没有内存隔离,单个线程崩溃会导致整个应用程序的退出

8. 有关进程和线程的说法,错误的是()[多选]

A.一个程序至少有一个进程,一个进程至少有一个线程

B.操作系统的最小调度单位是进程

C.线程自己不拥有系统资源

D.一个线程可以创建和撤销另一个线程

9. 关于多线程和多进程编程,下面描述正确的是() [多选]

A.多进程里,子进程可复制父进程的所有堆和栈的数据;而线程会与同进程的其他线程共享数据,但拥有自己的栈空间

B.线程因为有自己的独立栈空间且共享数据,所有执行的开销相对较大,同时不利于资源管理和保护

C.线程的通信速度更快,切换更快,因为他们在同一地址空间内,且还共享了很多其他的进程资源,比如页表指针这些是不需要切换的

D.线程使用公共变量/内存时需要使用同步机制,因为他们在同一地址空间内

E.因多进程里,每个子进程有自己的地址空间,因此相互之间通信时,线程不如进程灵活和方便

答案及解析

1. D

D错误,线程并没有独立的虚拟地址空间,只是在进程虚拟地址空间中拥有相对独立的一块空间

2. C

线程独有:栈,寄存器,信号屏蔽字,errno...等信息,因此各个线程各自有各自的栈区,但是堆区共用

3. C

A 用户态线程的切换在用户态实现,不需要内核支持

B 进程是资源分配的基本单位,线程是调度的基本单位

D 线程才是调度的基本单位

4. D

A错误 线程只是在进程虚拟地址空间中拥有相对独立的一块空间,但是本质上说用的是同一个地址空间

B正确 使用多线程可以更加充分利用cpu资源,使任务处理效率更高,进而提高程序响应

C正确 对于多核心cpu来说,每个核心都有一套独立的寄存器用于进行程序处理,因此可以同时将多个执行流的信息加载到不同核心上并行运行,充分利用cpu资源提高处理效率

D错误 线程包含cpu现场,但是线程只是进程中的一个执行流,执行的是程序中的一个片段代码,多个线程完整整体程序的运行

5. BCD

A 线程是调度的基本单位

E 每个线程在进程虚拟地址空间中会分配拥有相对独立的栈空间,而并不是共享栈空间,这样会导致运行时栈混乱

6. BC

A错误 进程比线程安全的原因是每个进程有独立的虚拟地址空间,有自己独有的数据,具有独立性,不会数据共享这个太过宽泛与片面

D错误 进程有独立的地址空间,但是同一个进程的线程之间共享同一个地址空间

7. ABD

A正确 因为线程之间共享地址空间,因此通信更加方便,全局数据以及函数传参都可以实现,而进程间则需要系统调用来完成

B正确 因为线程之间共享了进程中的大部分资源,因此共享的数据不需要重新创建或销毁,因此消耗上低于进程,反之也就是速度快于进程

C错误 大量的计算使用多进程和多线程都可以实现并行/并发处理,而线程的资源消耗小于多进程,而稳定向较多进程有所不如,因此还要看具体更加细致的需求场景

D正确 其实不仅仅是内存隔离的问题,还有就是异常针对的是整个进程,因此单个线程的崩溃会导致异常针对进程触发,最终退出整个进程。

8. AB

A错误 程序是静态的,不涉及进程,进程是程序运行时的实体,是一次程序的运行

B错误 操作系统的最小调度单位是线程

C正确 进程是资源的分配单位,所以线程并不拥有系统资源,而是共享使用进程的资源,进程的资源由系统进行分配

D正确 任何一个线程都可以创建或撤销另一个线程

9. ACD

B 线程拥有自己的栈空间且共享数据没错,但是资源消耗更小,且便于进程内线程间的资源管理和保护,否则会造成栈混乱

E 进程因为每个都有独立的虚拟地址空间,因此通信麻烦,需要调用内核接口实现。而线程间共用同一个虚拟地址空间,通过全局变量以及传参就可实现通信,因此更加灵活方便

本篇完。

下一篇:零基础Linux_23(多线程)线程安全+线程互斥+线程同步。

2023.10.24能想到的三个节日,记录一下,各位程序员和准程序员节日快乐。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/106574.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

双十一某宝、某东活动脚本

一、前言 双十一马上就快开始了&#xff0c;各大网购平台的优惠活动开展的如火如荼&#xff0c;羊毛党们也是摩拳擦掌&#xff0c;蠢蠢欲动。为了提高效率&#xff0c;自动化脚本应运而生&#xff0c;今天&#xff0c;小编为大家带来的就是这么三款自动化点击软件。主要是针对…

软考系统架构师知识点集锦五:系统可靠性分析与设计

一、考情分析 二、考点精讲 2.1相关基本概念 可靠性:可靠性是软件系统在应用或系统错误面前&#xff0c;在意外或错误使用的情况下维持软件系统的功能特性的基本能力。 可用性:可用性是系统能够正常运行的时间比例。 软件可靠性 ≠ 硬件可靠性 软硬件对比 复杂性:软件复杂性比…

[已解决]安装的明明是pytorch-gpu,但是condalist却显示cpu版本,而且torch.cuda.is_available 也是flase

问题; 安装了gpu版本的pytorch&#xff0c;但是显示的torch.cuda.is_available(&#xff09;却是flase。 conda list查看 版本显示只有cpuonly 在网上找了半天&#xff0c;也没有解决办法。 仔细看了一下&#xff0c;发现&#xff0c;有个单独的包叫cpuonly&#xff0c;不知道…

JAVAEE初阶相关内容第十六弹--网络编程

写在前 这一节的内容首先是对十五弹&#xff08;UDP回显服务器&#xff09;进行简单的改进&#xff0c;在这基础上开始介绍TCP流套接字编程。 目录 写在前 1.改进回显服务器 1.1完整代码实现 1.2运行输出结果 2.TCP流套接字编程 2.1ServerSocketAPI 2.2SocketAPI 3.TC…

小知识(6) el-table表格选中行和回显行(vue3)

el-table表格选中行和回显行 官方文档说明 https://element-plus.org/zh-CN/component/table.html#table-%E6%96%B9%E6%B3%95 环境&#xff1a;vue3element-plus 选中行selection <el-table ref"baseTableRef" row-key"id" border :selection"tr…

【OpenCV实现平滑图像形态学变化】

文章目录 概要目标腐蚀膨胀开运算结构元素&#xff08;内核&#xff09;小结 概要 形态学变化是一组简单的图像操作&#xff0c;主要用于处理二值图像&#xff0c;即只包含黑和白两种颜色的图像。这些操作通常需要两个输入&#xff0c;原始图像和一个内核&#xff08;kernel&a…

第11期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练 Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大型语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以…

CloudQuery + StarRocks:打造高效、安全的数据库管控新模式

随着技术的迅速发展&#xff0c;各种多元化的数据库产品应运而生&#xff0c;它们不仅类型众多&#xff0c;而且形式各异&#xff0c;国产化数据库千余套&#xff0c;开源数据库百余套 OceanBase 、PolarDB 、StarRocks…还有一些像 Oracle、MySQL 这些传统数据库。这些数据库产…

flutter开发实战-hero实现图片预览功能extend_image

flutter开发实战-hero实现图片预览功能extend_image 在开发中&#xff0c;经常遇到需要图片预览&#xff0c;当feed中点击一个图片&#xff0c;开启预览&#xff0c;多个图片可以左右切换swiper&#xff0c;双击图片及手势进行缩放功能。 这个主要实现使用extend_image插件。在…

达梦:开启sql日志记录

前言 开启sql日志记录&#xff0c;可协助排查定位数据库问题。生产开启会有一定的性能消耗&#xff0c;建议打开 SQL 日志异步刷盘功能 1.配置sqllog.ini文件 sqllog.ini 用于 SQL 日志的配置&#xff0c;当且仅当 INI 参数 SVR_LOG1 时使用。 运行中的数据库实例&#xff0c;可…

Go学习第十一章——协程goroutine与管道channel

Go协程goroutine与管道channel 1 协程goroutine1.1 基本介绍1.2 快速入门1.3 调度模型&#xff1a;MPG模式介绍1.4 设置cpu数1.5 协程资源竞争问题1.6 解决协程并发方案 2 管道channel2.1 基本介绍2.2 快速入门2.3 管道的关闭和遍历2.4 管道和协程的结合2.5 声明 只读/只写 的管…

GZ035 5G组网与运维赛题第2套

2023年全国职业院校技能大赛 GZ035 5G组网与运维赛项(高职组) 赛题第2套 一、竞赛须知 1.竞赛内容分布 竞赛模块1--5G公共网络规划部署与开通(35分) 子任务1:5G公共网络部署与调试(15分) 子任务2:5G室内与室外站点建设(20分) 竞赛模块2--5G公共网络运维与优化(…

Codeforces Round 905 (Div. 3)ABCDEF

Codeforces Round 905 (Div. 3) 目录 A. Morning题意思路核心代码 B. Chemistry题意思路核心代码 C. Raspberries题意思路核心代码 D. In Love题意思路核心代码 E. Look Back题意思路核心代码 A. Morning 题意 从一开始&#xff0c;每一次操作可以选择当前的数字打印或者是移…

Vue3 + Tsx 集成 ace-editor编辑器

Ace Editor介绍 Ace Editor&#xff08;全名&#xff1a;Ajax.org Cloud9 Editor&#xff09;是一个开源的代码编辑器&#xff0c;旨在提供强大的代码编辑功能&#xff0c;通常用于构建基于Web的代码编辑应用程序。它最初由Cloud9 IDE开发&#xff0c;现在由开源社区维护。 主…

C++ 左值、右值、左值引用以及右值引用

一、左值和右值 将亡值 1.左值 左值是一个表示数据的表达式&#xff0c;比如&#xff1a;变量名、解引用的指针变量。一般地&#xff0c;我们可以获取它的地址和对它赋值&#xff0c;但被 const 修饰后的左值&#xff08;常性&#xff09;&#xff0c;不能给它赋值&#xff0…

【安装tensorflow-CPU版本】

一、安装目的二、安装过程三、总结 一、安装目的 使自己的jupyter能用tensorflow 二、安装过程 首先打开anaconda prompt 接着输入conda list 查看自己是否安装了tensorflow 在 Python 中使用 pip 工具来升级 pip 自身并指定了使用清华大学的镜像源进行安装 python -m pip …

手写Vue渲染器render函数

使用js对象来描述UI更加的灵活。“这种对象”在vue框架中被称为虚拟DOM&#xff0c;渲染函数内部可以创建虚拟DOM&#xff0c;然后vue.js可以将其内容进行渲染。 1.渲染器的介绍 渲染器的作用就是把虚拟DOM渲染为真实DOM 思考下&#xff0c;我们有一个虚拟 DOM&#xff0c;如…

K8s概念汇总-笔记

目录 1.Master 1.1在Master上运⾏着以下关键进程 2.什么是Node? 1.2在每个Node上都运⾏着以下关键进程 3.什么是 Pod ? 4. 什么是Label &#xff1f; 5.Replication Controller 6.Deployment 6.1Deployment的典型场景&#xff1a; 7.Horizontal Pod Autoscaler TODO…

【计算机毕设小程序案例】基于SpringBoot的小演员招募小程序

前言&#xff1a;我是IT源码社&#xff0c;从事计算机开发行业数年&#xff0c;专注Java领域&#xff0c;专业提供程序设计开发、源码分享、技术指导讲解、定制和毕业设计服务 &#x1f449;IT源码社-SpringBoot优质案例推荐&#x1f448; &#x1f449;IT源码社-小程序优质案例…

Linux mkdir命令:创建目录(文件夹)

mkdir 命令&#xff0c;是 make directories 的缩写&#xff0c;用于创建新目录&#xff0c;此命令所有用户都可以使用。mkdir 命令的基本格式为&#xff1a; [rootlocalhost ~]# mkdir [-mp] 目录名 -m 选项用于手动配置所创建目录的权限&#xff0c;而不再使用默认权限。 -p…