【RabbitMQ 实战】12 镜像队列

一、镜像队列的概念

RabbitMQ的镜像队列是将消息副本存储在一组节点上,以提高可用性和可靠性。镜像队列将队列中的消息复制到一个或多个其他节点上,并使这些节点上的队列保持同步。当一个节点失败时,其他节点上的队列不受影响,因为它们上面都有消息的备份。这提高了消息的可靠性和可用性。

镜像队列的设置可以在创建队列时定义。您可以指定要创建的节点数和要在哪些节点上运行备份队列。 RabbitMQ支持同步和异步镜像模式。在同步模式下,消息必须被复制到所有备份节点,而在异步模式下,消息可以被复制到一个或多个备份节点。

使用镜像队列可以确保消息减少丢失概率,并且可以减少消息传递失败的可能性。这使得RabbitMQ成为一种可靠的消息传递解决方案。

二、配置镜像队列

使用策略(Policy)来配置镜像策略,策略使用正则表达式来配置需要应用镜像策略的队列名称,以及在参数中配置镜像队列的具体参数。

按此步骤创建镜像策略,该策略为所有 mirror_ 开头的队列创建 3 副本镜像
在这里插入图片描述
在这里插入图片描述
参数解释:

Name: policy的名称,用户自定义。

Pattern: queue的匹配模式(正则表达式)。^表示所有队列都是镜像队列。

Definition: 镜像定义,包括三个部分ha-sync-mode、ha-mode、ha-params。

ha-mode: 指明镜像队列的模式,有效取值范围为all/exactly/nodes。
all:表示在集群所有的代理上进行镜像。
exactly:表示在指定个数的代理上进行镜像,代理的个数由ha-params指定。
nodes:表示在指定的代理上进行镜像,代理名称通过ha-params指定。
ha-params: ha-mode模式需要用到的参数。
ha-sync-mode: 表示镜像队列中消息的同步方式,有效取值范围为:automatic,manually。
automatic:表示自动向master同步数据。
manually:表示手动向master同步数据。
Priority: 可选参数, policy的优先级。

也可以通过命令行来进行添加
rabbitmqctl set_policy [-p vhost] [–priority priority] [–apply-to apply-to] name pattern definition

上面的示例如下

rabbitmqctl set_policy --priority 0 --apply-to queues mirror_queue "^mirror_" '{"ha-mode":"exactly","ha-params":3,"ha-sync-mode":"automatic"}'

三、使用镜像队列

我们建好了policy后,就可以建一个队列了,只要符合上面我们建的镜像队列policy,那么该队列就会自动创建为镜像队列

镜像队列显示的蓝色 +1 表示同步副本数为 1 个。
显示的 mirror-queue为该队列应用的镜像策略。在这里插入图片描述
点击队列名称可以进入查看队列详细信息,从中可以看出队列的主节点、从节点和镜像策略
在这里插入图片描述
参数说明
镜像队列有许多配置参数,表达了镜像队列的镜像策略和异常后的晋升策略。

下面来详细解释一下这些配置参数的意义

镜像策略

ha-modeha-params结果
exactlycount集群中队列副本的数量(主队列加上镜像)。count值为1表示一个副本:只有主节点。如果主节点不可用,则其行为取决于队列是否持久化。count值为2表示两个副本:一个队列主队列和一个队列镜像。换句话说:“镜像数=节点数-1”。如果运行队列主服务器的节点变得不可用,队列镜像将根据配置的镜像提升策略自动提升到主服务器。如果集群中的可用节点数少于count,则将队列镜像到所有节点。如果集群中有多个计数节点,并且一个包含镜像的节点宕机,那么将在另一个节点上创建一个新镜像。使用’ exactly ‘模式和’ ha-promot-on-shutdown ': ’ always '可能是危险的,因为队列可以跨集群迁移,并在停机时变得不同步。
all不设置队列跨集群中的所有节点镜像。当一个新节点被添加到集群中时,队列将被镜像到该节点。这个设置非常保守。建议设置的副本值为大多数节点N / 2 + 1。镜像到所有节点会给所有集群节点带来额外的负担,包括网络I/O、磁盘I/O和磁盘空间的使用。
nodes节点名称队列被镜像到节点名中列出的节点。节点名是在rabbitmqctl cluster_status中出现的Erlang节点名;它们的形式通常是“rabbit@hostname”。如果这些节点名中有任何一个不是集群的一部分,则不构成错误。如果在声明队列时列表中的节点都不在线,则将在声明客户机连接的节点上创建队列。

新镜像同步策略

ha-sync-mode说明
manual这是默认模式。新队列镜像将不接收现有消息,它只接收新消息。一旦使用者耗尽了仅存在于主服务器上的消息,新的队列镜像将随着时间的推移成为主服务器的精确副本。如果主队列在所有未同步的消息耗尽之前失败,则这些消息将丢失。您可以手动完全同步队列,详情请参阅未同步的镜像部分。
automatic当新镜像加入时,队列将自动同步。值得重申的是,队列同步是一个阻塞操作。如果队列很小,或者您在RabbitMQ节点和ha-sync-batch-size之间有一个快速的网络,那么这是一个很好的选择。

从节点晋升策略

镜像队列主节点出现故障时,最老的从节点会被提升为新的主节点。如果新提升为主节点的这个副本与原有的主节点并未完成数据的同步,那么就会出现数据的丢失,而实际应用中,出现数据丢失可能会导致出现严重后果。

rabbitmq 提供了 ha-promote-on-shutdown,ha-promote-on-failure 两个参数让用户决策是保证队列的可用性,还是保证队列的一致性;两个参数分别控制正常关闭、异常故障情况下从节点是否提升为主节点,其可设置的值为 when-synced 和 always。

ha-promote-on-shutdown/ha-promote-on-failure说明
when-synced从节点与主节点完成数据同步,才会被提升为主节点
always无论什么情况下从节点都将被提升为主节点

注意事项

多少个镜像才是最优的

镜像到所有节点会增加所有集群节点的负载,包括网络 I/O、磁盘 I/O 和磁盘空间的使用。

在大多数情况下,在每个节点上都有一个副本是不必要的。对于3个或更多节点的集群,建议复制到(N/2+1)个节点,例如 3 个节点集群中的 2 个节点或 5 个节点集群中的 3 个节点。

由于某些数据可能天生是短暂的或对时间非常敏感,因此对某些队列使用较少的镜像(甚至不使用任何镜像)是完全合理的。

生产者确认和事务

镜像队列同时支持生产者确认和事务机制。在事务机制中,只有当前事务在全部镜像中执行之后,客户端才会收到 Tx.Commit-OK 的消息。

同样的,在生产者确认机制中,生产者进行当前消息确认的前提是该消息被全部镜像接收。

流控

RabbitMQ 使用信用证机制限制消息生产的速度。当生产者收到队列的所有镜像授予的信用时,才允许发送新的消息。(这里的信用指的时发送许可。)如果有镜像没有授予生产者信用,会导致生产者生产阻塞。生产者会一直被阻塞,直到所有镜像都授予它信用值,或者有的镜像从集群中断开。

Erlang 通过定时向所有节点发送心跳的方式检测断开的情况。发送心跳的间隔可以用 net_ticktime 来控制。

主节点失效和消费者取消

从镜像队列中消费的客户端可能希望知道他们所消费的队列已经失败转移。当镜像队列发生故障时,哪些消息被发送到哪个消费者的信息就丢失了,因此所有未被确认的消息都会被重新发送,并设置了 redelivered 的标志。消费者可能希望知道这将会发生。

如果是这样,他们可以使用参数 x-cancel-on-ha-failover 设置为 true。然后,它们的消费将在故障转移时被取消,并发送消费者取消通知。

Channel channel = ...;
Consumer consumer = ...;
Map<String, Object> args = new HashMap<String, Object>();
args.put("x-cancel-on-ha-failover", true);
channel.basicConsume("my-queue", false, args, consumer);

这将使用参数集创建一个新的消费者。

四、镜像队列原理

4.1 镜像队列的数据流

4.1.1 客户端连接主节点

首先看生产者消费者直接与主节点连接的情况。该情况下队列的主副本所在的节点与生产者/消费者直接连接,效率较高。
在这里插入图片描述

生产者,消费者连接到 RabbitMQ 后,在 RabbitMQ 内部会创建对应的 Connection,Channel 进程。

Connecton 进程从 socket 上接收生产者发送的消息后投递到 Channel 进程。

在 Channel 进程中,根据消息发送的 exchange 与消息的 routing-key,在内部数据库的路由表中,查找所有匹配的 Queue 的进程 PID,然后将消息投递到Queue 的进程中。在镜像队列的情况下,Channel 进程除了将消息发送给队列的 Leader 进程外,还会将消息发送给队列所有的 Follower 进程,而 Follower 进程都在远端节点上,因此这里就多了一次集群间的网络交互。

镜像队列的 Leader 进程收到消息后,需要将消息同步给所有的 Follower 进程。RabbitMQ 采用 GM(组播)算法实现,镜像队列中的 Leader 和所有 Follower 都会发送一次消息和接收一次消息,同时还会发送一次对消息的 ACK,和接收一次消息的 ACK。

综上所述,生产者发送一条消息,队列 Leader 进程所在节点会收到两次:一次是生产者发送的,一次是队列 Follower 进程发送的;同样也会将消息对外发送两次:一次是生产者对应的 Channel 进程将消息发送给队列的 Follower 进程;一次是队列的 Leader 进程进行广播同步将消息发送给 Follower 进程。此外,镜像队列的GM算法实现 ,每条消息还会有额外的确认消息在集群间进行发送。

再结合图中的情况,一条消息从生产者到消费,Node1节点是2进3出的流量,Node2节点是2进1出的流量。

4.1.2 客户端连接从节点

在这里插入图片描述

如果生产者和消费者连接的是从节点,根据镜像队列的机制,只有主节点向外提供服务,所以镜像队列的消费需要由 node2 的队列消费消息。

一条消息从生产到消费,生产者消费者连接的节点是3进3出,队列master进程所在的节点是2进2出。

4.2 镜像队列的实现原理

4.2.1 普通队列结构

在这里插入图片描述

通常队列由两部分组成

amqqueue_process ,负责协议相关的消息处理,即接收生产者发布的消息、向消费者投递消息、处理消息 confirm、acknowledge 等等
backing_queue,它提供了相关的接口供 amqqueue_process 调用,完成消息的存储以及可能的持久化工作等。

4.2.2 镜像队列结构

在这里插入图片描述

镜像队列同样由这两部分组成,amqqueue_process 仍旧进行协议相关的消息处理,backing_queue 则是由 master 节点和 slave 节点组成的一个特殊的 backing_queue。Leader 节点和 Follower 节点都由一组进程组成,一个负责消息广播的 GM,一个负责对 GM 收到的广播消息进行回调处理。

在 Leader 节点上回调处理是 coordinator,在slave节点上则是 mirror_queue_slave。mirror_queue_slave 中包含了普通的 backing_queue 进行消息的存储,Leader 节点中 backing_queue 包含在 mirror_queue_master 中由 amqqueue_process 进行调用。

4.2.3 GM(Guaranteed Multicast)

GM 模块实现的是一种可靠的组播通信协议,该协议能够保证组播消息的原子性,即保证组中活着的节点要么都收到消息要么都收不到。

它的实现大致为:将所有的节点形成一个循环链表,每个节点都会监控位于自己左右两边的节点,当有节点新增时,相邻的节点保证当前广播的消息会复制到新的节点上 : 当有节点失效时,相邻的节点会接管以保证本次广播的消息会复制到所有的节点。在 Leader 和 Follower 上的这些 GM 形成一个组 (gm_group) ,这个组的信息会记录在 Mnesia 中。不同的镜像队列形成不同的组。操作命令从 Leader 对应的 GM 发出后,顺着链表传送到所有的节点。由于所有节点组成了一个循环链表, Leader 对应的 GM 最终会收到自己发送的操作命令,这个时候 Leader 就知道该操作命令都同步到了所有的 slave 上。

4.2.4 消息的广播

消息从 Leader 节点发出,顺着节点链表发送。在这期间,所有的 Follower 节点都会对消息进行缓存,当 Leader 节点收到自己发送的消息后,会再次广播 ack 消息,同样 ack 消息会顺着节点链表经过所有的 Follower 节点,其作用是通知 Follower 节点可以清除缓存的消息,当 ack 消息回到 Leader 节点时对应广播消息的生命周期结束。

下图为一个简单的示意图,A 节点为 Leader 节点,广播一条内容为 test 的消息。1 表示消息为广播的第一条消息;id=A表示消息的发送者为节点 A。右边是Follower 节点记录的状态信息。

在这里插入图片描述

为什么所有的节点都需要缓存一份发布的消息呢?

master发布的消息是依次经过所有slave节点,在这期间的任何时刻,有可能有节点失效,那么相邻的节点可能需要重新发送给新的节点。例如,A->B->C->D->A形成的循环链表,A为master节点,广播消息发送给节点B,B再发送给C,如果节点C收到B发送的消息还未发送给D时异常结束了,那么节点B感知后节点C失效后需要重新将消息发送给D。同样,如果B节点将消息发送给C后,B,C节点中新增了E节点,那么B节点需要再将消息发送给新增的E节点。

五 镜像队列实践

在 RabbitMQ 3.8 中发布了新的 Quorum Queues,旨在完全代替原有的镜像队列。

在许多情况下,仲裁队列将是比传统队列镜像更好的选择。鼓励读者熟悉仲裁队列,并考虑它们而不是经典的镜像队列

5.1、镜像队列的缺点

镜像队列最大的问题是其同步算法造成的低性能。镜像队列有如下几个设计缺陷

5.1.1 设计缺陷 1:broker 离线后重新上线

基本的问题是,当 broker 离线并再次恢复时,它在镜像中的任何数据都将被丢弃。这是关键的设计缺陷。现在,镜像已恢复在线,但为空,管理员需要做出决定:是否同步镜像。“同步”意味着将当前消息从 leader 复制到镜像。

5.1.2 设计缺陷 2:同步阻塞

此时第二个致命的设计缺陷显露了出来。如果要同步消息,会阻塞整个队列,让这个队列不可用。当队列比较短的时候这通常不是什么问题,但当队列很长或者消息总大小很大的时候,同步将会需要很长时间。不仅如此,同步会导致集群中与内存相关的问题,有时甚至会导致同步卡住,需要重新启动。

默认情况下,所有镜像队列都会自动同步,但也有人用户不同步镜像。这样,所有新消息都将被复制,老消息都不会被复制,这将减少冗余,会使消息丢失的概率加大。

这个问题也引发滚动升级的问题,因为重新启动的 broker 将丢弃其所有数据,并需要同步来恢复全部数据冗余。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/106162.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【网络协议】聊聊TCP的三挥四握

上一篇我们说了网络其实是不稳定的&#xff0c;TCP和UDP其实是两个不同的对立者&#xff0c;所以TCP为了保证数据在网络中传输的可靠性&#xff0c;从丢包、乱序、重传、拥塞等场景有自己的一套打法。 TCP格式 源端口和目标端口是不可缺少的&#xff0c;用以区分到达发送给拿…

【每日一题】掷骰子等于目标和的方法数

文章目录 Tag题目来源题目解读解题思路方法一&#xff1a;动态规划 写在最后 Tag 【动态规划】【数组】 题目来源 1155. 掷骰子等于目标和的方法数 题目解读 你手里有 n 个一样的骰子&#xff0c;每个骰子都有 k 个面&#xff0c;分别标号 1 到 n。给定三个整数 n&#xff0…

java异常处理

异常处理分为三类&#xff1a; 检查性异常 用户错误或问题引起的异常&#xff0c;这是程序员无法预见的。例如要打开一个不存在文件时&#xff0c;一个异常就发生了&#xff0c;这些异常在编译时不能被简单地忽略。 运行时异常 运行时异常是可能被程序员避免的异常&#xf…

2023深耕kotlin,谈谈前景

为什么学习kotlin&#xff1f; Kotlin 早就已经是 Google 官方推荐的开发语言了&#xff0c;而且 Android 新的 Compose 框架只支持 Kotlin &#xff0c;在 Google 那里&#xff0c;Android开发中 Java 其实已经被淘汰了。Java 和 Kotlin 虽然都属于高级语言&#xff0c;但是 …

LeetCode--2.两数相加

文章目录 1 题目描述2 解题思路2.1 代码实现 1 题目描述 给你两个 非空 的链表, 表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的, 并且每个节点只能存储 一位 数字 请你将两个数相加, 并以相同形式返回一个表示和的链表 你可以假设除了数字 0 之外, 这两个数都…

redis archive github

https://github.com/redis/redis/releases/tag/7.2.2https://github.com/redis/redis/releases/tag/7.2.2

虹科分享 | 买车无忧?AR带来全新体验!

文章来源&#xff1a;虹科数字化与AR 阅读原文&#xff1a;https://mp.weixin.qq.com/s/XsUFCTsiI4bkEMBHcGUT7w 新能源汽车的蓬勃发展&#xff0c;推动着汽车行业加速进行数字化变革。据数据显示&#xff0c;全球新能源汽车销售额持续上升&#xff0c;预计到2025年&#xff0…

VTK OrientationMarker 方向 三维坐标系 相机坐标轴 自定义坐标轴

本文 以 Python 语言开发 我们在做三维软件开发时&#xff0c;经常会用到相机坐标轴&#xff0c;来指示当前空间位置&#xff1b; 坐标轴效果&#xff1a; 相机方向坐标轴 Cube 正方体坐标轴 自定义坐标轴&#xff1a; Code&#xff1a; Axes def main():colors vtkNamedC…

Git总结

Git介绍 一、Git常用命令 添加、提交 git add 将文件从工作区添加到暂存区&#xff0c;表示git开始追踪文件&#xff0c;如果不想让git追踪了&#xff0c;可以使用 git rm --cached <file> 取消文件追踪&#xff0c;仅仅只代表追踪取消&#xff0c;工作区文件还是照…

折磨的Ts

先看下官网 这里的withDefault是给props设置默认值的 由于props传入了个函数在设置默认值的时候不知道怎么设置了 解决办法&#xff1a;直接不设置了。也不写了。

简单了解一下:NodeJS的WebSocket网络编程

NodeJS的webSocket网络编程。 那什么是WebSocket呢&#xff1f;WebSocket是HTML5提供的一种浏览器和服务器进行通信的网络技术。两者之间&#xff0c;只需要做一个握手动作&#xff0c;就可以在浏览器和服务器之间开启一条通道&#xff0c;就可以进行数据相互传输。 实现WebS…

行情分析——加密货币市场大盘走势(10.27)

目前大饼开始了震荡盘整&#xff0c;目前远离EMA21均线&#xff0c;预计会有大的回调动作。而MACD日线来看&#xff0c;昨日和今日开始呈现绿色空心柱&#xff0c;也在说明大饼在做震荡盘整。不排除大跌的可能性&#xff0c;大饼可以开始布局中长线空单&#xff0c;可以再35000…

死锁Deadlock

定义 死锁是指两个或多个线程互相持有对方所需的资源&#xff0c;从而导致它们无法继续执行的情况。如下图所示&#xff0c;现有两个线程&#xff0c;分别是线程A及线程B&#xff0c;线程A持有锁A&#xff0c;线程B持有锁B。此时线程A想获取锁B&#xff0c;但锁B需等到线程B的结…

设计模式之桥梁模式

什么是桥梁模式 桥梁模式&#xff08;Bridge Pattern&#xff09;也称为桥接模式&#xff0c;属于结构型模式&#xff0c;它主要目的是通过组合的方式建立两个类之间的联系&#xff0c;而不是继承。桥梁模式将抽象部分与它的具体实现部分分离&#xff0c;使它们都可以独立地变…

Dockerfile文件自动化生成R4L镜像

Dockerfile文件自动化生成R4L镜像的步骤 1、安装Docker&#xff1a;2、使用Dockerfile一键生成镜像&#xff1a;3、查看生成的Docker镜像&#xff1a;4、删除Docker镜像&#xff1a;5、生成Docker容器&#xff1a;6、查看容器7、删除容器 1、安装Docker&#xff1a; curl -fsS…

C语言之预处理

目录 前言 宏定义define的用法 文件包含include的用法 条件编译的用法 其他预处理命令 练习题 练习一 练习二 练习三 前言 预处理命令可以改变程序设计环境&#xff0c;提高编程效率&#xff0c;它们并不是C语言本身的组成部分&#xff0c;不能直接对它们进行编译&am…

京东(天猫)数据分析:2023下半年茶饮料市场高速增长,东方树叶一骑绝尘

当前在食品饮料行业中&#xff0c;整体的增长放缓&#xff0c;且各个细分品类上都已经充分竞争。但茶饮料市场例外&#xff0c;近两年呈现高增长的态势&#xff0c;一来取决于行业头部企业也在积极推动茶饮料不断升级&#xff0c;另外是主打更健康、更时尚的茶饮料深受年轻消费…

51单片机汽车胎压大气气压测量仪仿真设计_数码管显示(代码+仿真+设计报告+讲解)

51单片机汽车胎压大气气压测量仪仿真设计_数码管显示 (代码仿真设计报告讲解) 仿真原版本&#xff1a;proteus 7.8 程序编译器&#xff1a;keil 4/keil 5 编程语言&#xff1a;C语言 设计编号&#xff1a;S0018 目录 51单片机汽车胎压大气气压测量仪仿真设计_数码管显示功…

洗衣行业在线预约小程序+前后端完整搭建教程

大家好哇&#xff0c;好久不见&#xff01;今天源码师父来给大家推荐一款洗衣行业在线预约的小程序&#xff0c;带有前后端的完整搭建教程。 目前&#xff0c;人们对生活品质的追求不断提高&#xff0c;但生活节奏却也不断加快。对品质的追求遇到了忙碌的生活节奏&#xff0c;…

网络协议--广播和多播

12.1 引言 在第1章中我们提到有三种IP地址&#xff1a;单播地址、广播地址和多播地址。本章将更详细地介绍广播和多播。 广播和多播仅应用于UDP&#xff0c;它们对需将报文同时传往多个接收者的应用来说十分重要。TCP是一个面向连接的协议&#xff0c;它意味着分别运行于两主…