分布式日志和链路追踪

分布式日志

实现思路

分布式日志框架服务的实现思路基本是一致的,如下:

  • 日志收集器:微服务中引入日志客户端,将记录的日志发送到日志服务端的收集器,然后以某种方式存储
  • 数据存储:一般使用ElasticSearch分布式存储,把收集器收集到的日志格式化,然后存储到分布式存储中
  • web服务:利用ElasticSearch的统计搜索功能,实现日志查询和报表输出

比较知名的分布式日志服务包括:

  • ELK:elasticsearch、Logstash、Kibana
  • GrayLog

ELK存在的问题

  1. 不能处理多行日志,比如Mysql慢查询,Tomcat/Jetty应用的Java异常打印
  2. 不能保留原始日志,只能把原始日志分字段保存,这样搜索日志结果是一堆Json格式文本,无法阅读。
  3. 不符合正则表达式匹配的日志行,被全部丢弃。

 Graylog的优点

  1. 一体化方案,安装方便,不像ELK有3个独立系统间的集成问题。
  2. 采集原始日志,并可以事后再添加字段,比如http_status_code,response_time等等。
  3. 自己开发采集日志的脚本,并用curl/nc发送到Graylog Server,发送格式是自定义的GELF,Flunted和Logstash都有相应的输出GELF消息的插件。自己开发带来很大的自由度。实际上只需要用inotifywait监控日志的modify事件,并把日志的新增行用curl/netcat发送到Graylog Server就可。
  4. 搜索结果高亮显示,就像google一样。
  5. 搜索语法简单,比如: source:mongo AND reponse_time_ms:>5000,避免直接输入elasticsearch搜索json语法
  6. 搜索条件可以导出为elasticsearch的搜索json文本,方便直接开发调用elasticsearch rest api的搜索脚本。

GrayLog的使用

GrayLog的流程框架图

流程如下:

  • 微服务中的GrayLog客户端发送日志到GrayLog服务端
  • GrayLog把日志信息格式化,存储到Elasticsearch
  • 客户端通过浏览器访问GrayLog,GrayLog访问Elasticsearch

这里MongoDB是用来存储GrayLog的配置信息的,这样搭建集群时,GrayLog的各节点可以共享配置。

GrayLog的安装

此时我们需要在docker中安装Mongodb, elasticSearch,GrayLog。

#部署Elasticsearch
docker run -d \
    --name elasticsearch \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.17.5

#部署MongoDB(
docker run -d \
--name mongodb \
-p 27017:27017 \
--restart=always \
-v mongodb:/data/db \
-e MONGO_INITDB_ROOT_USERNAME=sl \
-e MONGO_INITDB_ROOT_PASSWORD=123321 \
mongo:4.4

#部署 ,分别设置es和mongo的地址
docker run \
--name graylog \
-p 9000:9000 \
-p 12201:12201/udp \
-e GRAYLOG_HTTP_EXTERNAL_URI=http://192.168.150.101:9000/ \
-e GRAYLOG_ELASTICSEARCH_HOSTS=http://192.168.150.101:9200/ \
-e GRAYLOG_ROOT_TIMEZONE="Asia/Shanghai"  \
-e GRAYLOG_WEB_ENDPOINT_URI="http://192.168.150.101:9000/:9000/api" \
-e GRAYLOG_PASSWORD_SECRET="somepasswordpepper" \
-e GRAYLOG_ROOT_PASSWORD_SHA2=8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918 \
-e GRAYLOG_MONGODB_URI=mongodb://sl:123321@192.168.150.101:27017/admin \
-d \
graylog/graylog:4.3

命令解读:

  • 端口信息:
    • -p 9000:9000:GrayLog的http服务端口,9000
    • -p 12201:12201/udp:GrayLog的GELF UDP协议端口,用于接收从微服务发来的日志信息
  • 环境变量
    • -e GRAYLOG_HTTP_EXTERNAL_URI:对外开放的ip和端口信息,这里用9000端口
    • -e GRAYLOG_ELASTICSEARCH_HOSTS:GrayLog依赖于ES,这里指定ES的地址
    • -e GRAYLOG_WEB_ENDPOINT_URI:对外开放的API地址
    • -e GRAYLOG_PASSWORD_SECRET:密码加密的秘钥
    • -e GRAYLOG_ROOT_PASSWORD_SHA2:密码加密后的密文。明文是admin,账户也是admin
    • -e GRAYLOG_ROOT_TIMEZONE="Asia/Shanghai":GrayLog容器内时区
    • -e GRAYLOG_MONGODB_URI:指定MongoDB的链接信息
  • graylog/graylog:4.3:使用的镜像名称,版本为4.3

进行测试

访问对应的9000端口。

 集成微服务进行测试

导入依赖

<dependency>
    <groupId>biz.paluch.logging</groupId>
    <artifactId>logstash-gelf</artifactId>
    <version>1.15.0</version>
</dependency>

修改Logback.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--scan: 当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。-->
<!--scanPeriod: 设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。-->
<!--debug: 当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。-->
<configuration debug="false" scan="false" scanPeriod="60 seconds">
    <springProperty scope="context" name="appName" source="spring.application.name"/>
    <!--文件名-->
    <property name="logback.appname" value="${appName}"/>
    <!--文件位置-->
    <property name="logback.logdir" value="/data/logs"/>

    <!-- 定义控制台输出 -->
    <appender name="stdout" class="ch.qos.logback.core.ConsoleAppender">
        <layout class="ch.qos.logback.classic.PatternLayout">
            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} - [%thread] - %-5level - %logger{50} - %msg%n</pattern>
        </layout>
    </appender>


    <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
            <level>DEBUG</level>
        </filter>
        <File>${logback.logdir}/${logback.appname}/${logback.appname}.log</File>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <FileNamePattern>${logback.logdir}/${logback.appname}/${logback.appname}.%d{yyyy-MM-dd}.log.zip</FileNamePattern>
            <maxHistory>90</maxHistory>
        </rollingPolicy>
        <encoder>
            <charset>UTF-8</charset>
            <pattern>%d [%thread] %-5level %logger{36} %line - %msg%n</pattern>
        </encoder>
    </appender>

    <appender name="GELF" class="biz.paluch.logging.gelf.logback.GelfLogbackAppender">
        <!--GrayLog服务地址-->
        <host>udp:192.168.150.101</host>
        <!--GrayLog服务端口-->
        <port>12201</port>
        <version>1.1</version>
        <!--当前服务名称-->
        <facility>${appName}</facility>
        <extractStackTrace>true</extractStackTrace>
        <filterStackTrace>true</filterStackTrace>
        <mdcProfiling>true</mdcProfiling>
        <timestampPattern>yyyy-MM-dd HH:mm:ss,SSS</timestampPattern>
        <maximumMessageSize>8192</maximumMessageSize>
    </appender>

    <!--evel:用来设置打印级别,大小写无关:TRACE, DEBUG, INFO, WARN, ERROR, ALL 和 OFF,-->
    <!--不能设置为INHERITED或者同义词NULL。默认是DEBUG。-->
    <root level="INFO">
        <appender-ref ref="stdout"/>
        <appender-ref ref="GELF"/>
    </root>
</configuration>

这样就实现了微服务的分布式日志。

调用work服务的查询方法,日志就会出现在控制面板上。

日志回收策略

点击Default index set的Edit进行设置日志的回收策略。

日志的回策略有三种。

分别是:

  • Index Message Count:按照日志数量统计,默认超过20000000条日志开始清理
  • Index Size:按照日志大小统计,默认超过1GB开始清理
  • Index Time:按照日志日期清理,默认日志存储1天

搜索语法
搜索语法的格式

#不指定字段,默认从message字段查询
输入:undo

#输入两个关键字,关系为or
undo 统计

#加引号是需要完整匹配
"undo 统计"

#指定字段查询,level表示日志级别,ERROR(3)、WARNING(4)、NOTICE(5)、INFO(6)、DEBUG(7)
level: 6

#或条件
level:(6 OR 7)

自定义展示字段

可以在allMessage中显示字段。

 这里添加了level字段。

日志统计仪表

创建仪表

点击Create new dashboard,创建一个新的仪表。

 在该仪表中我们可以进行DIY。

可以DIY成这种效果。

分布式日志面试题

问: 在服务中你们通常会进入哪些信息呢?
答: 会记录: 服务的名称,日志的级别,日志的详细信息,时间,对应的类,调用的方法。

问: 那会在什么时候进行记录日志?

答: 在有异常信息调用重要方法时的参数传入时会记录日志。

链路追踪

APM  

什么是APM?

随着微服务架构的流行,一次请求往往需要涉及到多个服务,因此服务性能监控和排查就变得更复杂

  • 不同的服务可能由不同的团队开发、甚至可能使用不同的编程语言来实现
  • 服务有可能布在了几千台服务器,横跨多个不同的数据中心

因此,就需要一些可以帮助理解系统行为、用于分析性能问题的工具,以便发生故障的时候,能够快速定位和解决问题,这就是APM系统,全称是(Application Performance Monitor,当然也有叫 Application Performance Management tools)

APM最早是谷歌公开的论文提到的 Google Dapper。Dapper是Google生产环境下的分布式跟踪系统,自从Dapper发展成为一流的监控系统之后,给google的开发者和运维团队帮了大忙,所以谷歌公开论文分享了Dapper。

原理

  1. 包括:前端(A),两个中间层(B和C),以及两个后端(D和E)
  2. 当用户发起一个请求时,首先到达前端A服务,然后分别对B服务和C服务进行RPC调用;
  3. B服务处理完给A做出响应,但是C服务还需要和后端的D服务和E服务交互之后再返还给A服务,最后由A服务来响应用户的请求;

 

如何才能实现跟踪呢?需要明白下面几个概念:

  • 探针:负责在客户端程序运行时收集服务调用链路信息,发送给收集器
  • 收集器:负责将数据格式化,保存到存储器
  • 存储器:保存数据
  • UI界面:统计并展示

探针会在链路追踪时记录每次调用的信息,Span是基本单元,一次链路调用(可以是RPC,DB等没有特定的限制)创建一个span,通过一个64位ID标识它;同时附加(Annotation)作为payload负载信息,用于记录性能等数据。

span的基本结构

type Span struct {
    TraceID    int64 // 用于标示一次完整的请求id
    Name       string //名称
    ID         int64 // 当前这次调用span_id
    ParentID   int64 // 上层服务的调用span_id  最上层服务parent_id为null,代表根服务root
    Annotation []Annotation // 记录性能等数据
    Debug      bool
}

Skywalking的使用 

主要的特征:

  • 多语言探针或类库
    • Java自动探针,追踪和监控程序时,不需要修改源码。
    • 社区提供的其他多语言探针
      • .NET Core
      • Node.js
  • 多种后端存储: ElasticSearch, H2
  • 支持OpenTracing
    • Java自动探针支持和OpenTracing API协同工作
  • 轻量级、完善功能的后端聚合和分析
  • 现代化Web UI
  • 日志集成
  • 应用、实例和服务的告警

部署安装

#在此之前需要部署es

#oap服务,需要指定Elasticsearch以及链接信息
docker run -d \
-e TZ=Asia/Shanghai \
--name oap \
-p 12800:12800 \
-p 11800:11800 \
-e SW_STORAGE=elasticsearch \
-e SW_STORAGE_ES_CLUSTER_NODES=192.168.150.101:9200 \
apache/skywalking-oap-server:9.1.0


#部署ui,需要指定oap服务
docker run -d \
--name oap-ui \
-p 48080:8080 \
-e TZ=Asia/Shanghai \
-e SW_OAP_ADDRESS=http://192.168.150.101:12800 \
apache/skywalking-ui:9.1.0

访问对应的端口48080。

微服务探针

我们需要在对应的微服务中添加探针。

需要准备Keywalking-gent文件(在资源中获取)

打开Idea在对应的微服务上添加VM的配置

#在探针处添加skywalking-agent.jar在电脑的对应位置
#设置服务的名称
#设置skywalking的面板地址
-javaagent:D:\skywalking-agent\skywalking-agent.jar
-Dskywalking.agent.service_name=ms::sl-express-ms-work
-Dskywalking.collector.backend_service=192.168.150.101:11800

进行配置,效果为下:

访问接口进行测试

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/105694.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【QT开发笔记-基础篇】| 第四章 事件QEvent | 4.10 总结QT中的事件传递流程

本节对应的视频讲解&#xff1a;B_站_链_接 【QT开发笔记-基础篇】 第4章 事件 4.10 总结事件传递流程(1) 事件处理函数接受还是忽略 本章要实现的整体效果如下&#xff1a; 事件传递总流程图&#xff0c;如下&#xff1a; 这张图是不是还不太明白&#xff1f;&#xff1f; 别…

RabbitMQ基础篇 笔记

RabbitMQ 余额支付 同步调用 一步一步的来&#xff0c;支付业务写完后&#xff0c;如果之后加需求&#xff0c;还需要增加代码&#xff0c;不符合开闭原则。 性能上也有问题&#xff0c;openfeign是同步调用&#xff0c;性能太差。 同步调用耦合太多。 同步的优势是可以立…

matlab中narginchk函数用法及其举例

matlab中narginchk函数用法及其举例 narginchk在编写子函数程序时候&#xff0c;在验证输入参数数目方面具有重要作用&#xff0c;本博文讲一讲该函数的用法。 一、narginchk功能 narginchk的作用是验证输入参数数目。 二、语法 narginchk(minArgs,maxArgs)narginchk(minA…

windows服务器环境下使用php调用com组件

Office设置 安装 office2013 且通过正版激活码激活 在组件服务 计算机 我的电脑 DOM 中找到 Microsoft Word 97 - 2003 文档 服务&#xff0c;右键属性 身份验证调整为 无 在 标识中 调整为 交互式用户 php环境设置 开启com组件扩展 在php.ini中设置 extensionphp_com_dotn…

同范围中的嵌入式和单片机区别是什么?

今日话题&#xff0c;同范围中的嵌入式和单片机区别是什么&#xff1f;嵌入式系统和单片机不仅仅是软硬件的区别&#xff0c;更涉及到应用领域和功能特性的不同。嵌入式系统通常包括一个完整的计算机系统&#xff0c;其中包括处理器、内存、输入输出接口以及一个操作系统&#…

2023年中国消防报警设备市场规模现状及行业竞争趋势分析[图]

消防安全行业主要分为消防产品和消防工程两个子行业。消防产品又可细分成消防装备、消防报警、自动灭火、防火与疏散、通用与防烟排烟、消防供水等 6 大类&#xff0c;其中消防装备主要用于消防部队&#xff0c;其他 5 大类主要用于建筑物消防。 消防行业内容 资料来源&#x…

21款奔驰GLE450升级23P驾驶辅助 缓解开车疲劳

驾驶辅助和自动驾驶的区别就是需要人为去接管&#xff0c;虽然车辆会根据道路自己行驶&#xff0c;弯道上也能居中自动修正行驶&#xff0c;长时间不接管方向盘&#xff0c;系统会提示人为接管&#xff0c;这就是奔驰的23P驾驶辅助系统&#xff0c; 很多车友升级23P驾驶辅助系…

苍穹外卖-01

苍穹外卖-01 课程内容 软件开发整体介绍苍穹外卖项目介绍开发环境搭建导入接口文档Swagger 项目整体效果展示&#xff1a; ​ 管理端-外卖商家使用 ​ 用户端-点餐用户使用 当我们完成该项目的学习&#xff0c;可以培养以下能力&#xff1a; 1. 软件开发整体介绍 作为一名…

用Visual Studio(VS)开发UNIX/Linux项目

目录 FTP是免不了的 正确设置头文件 组织项目结构 创建何种项目类型 FTP自动上传 大部分具有Windows开发经验的程序员会比较喜欢使用Visual Studio&#xff0c;而大部分Unix/Linux程序员则喜欢使用UltraEdit直接在主机上写代码。 为什么直接在主机上写代码呢&#xff0c;因…

Leo赠书活动-03期 【ChatGPT 驱动软件开发:AI 在软件研发全流程中的革新与实践 】

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 赠书活动专栏 ✨特色专栏&#xff1a;…

【JAVA学习笔记】45 - (35 - 43)第十章作业

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter10/src/com/yinhai/homework10 1.静态属性的共享性质 判断下列输出什么 public class HomeWork01 {public static void main(String[] args) {Car c new Car();//无参构造时改变color为red…

Redis快速上手篇(四)(Spring Cache,缓存配置)(注解方式)

Spring Cache 从3.1开始&#xff0c;Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的 使用Spring Cache的时候我们要保证我们缓存的方法对于相同的方法参数要有相同的返回结果。 使用Spring Cache需要我们做两方面…

聚观早报 |2024款飞凡R7官宣;小米14新配色材质

【聚观365】10月27日消息 2024款飞凡R7官宣 小米14新配色材质 金山办公2023第三季度业绩 IBM2023第三季度业绩 新东方2024财年第一季度业绩 2024款飞凡R7官宣 飞凡汽车官宣&#xff0c;2024款飞凡R7将于11月上市&#xff0c;新车将搭载飞凡巴赫座舱&#xff0c;同时超过1…

endnote设置

问题1&#xff1a;参考文献的tab太长 首先要在endnote里面这样设置&#xff0c;file->output->edit "XXX" 保存之后&#xff0c;在word更新目录。 在word里面设置悬挂缩进 结果&#xff1a; Endnote参考编号与参考文献距离太远怎么调整 endnote 文献对齐方式…

正点原子嵌入式linux驱动开发——外置RTC芯片PCF8563

上一章学习了STM32MP1内置RTC外设&#xff0c;了解了Linux系统下RTC驱动框架。一般的应用场合使用SOC内置的RTC就可以了&#xff0c;而且成本也低&#xff0c;但是在一些对于时间精度要求比较高的场合&#xff0c;SOC内置的RTC就不适用了。这个时候需要根据自己的应用要求选择合…

解决报错:gnutls_handshake() failed: The TLS connection was non-properly terminated.

执行git clone的时候&#xff0c;出现错误&#xff1a;gnutls_handshake() failed: The TLS connection was non-properly terminated. 如图&#xff1a; 解决方式&#xff1a; 两次重置代理&#xff1a;完美解决 git config --global --unset https.https://github.com.pro…

网络搭建和运维的基础题目

服务部分&#xff08;linux&#xff09; 实操部分 1.在任意文件夹下面创建形如 A/B/C/D 格式的文件夹系列。 [rootlocalhost ~]# mkdir -p A/B/C/D 2.在创建好的文件夹下面&#xff0c;A/B/C/D &#xff0c;里面创建文本文件 mkdir.txt [rootlocalhost ~]# cd A/B/C/D [r…

7.MySQL复合查询

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 目录 复合查询 基本查询回顾 多表查询 自连接 子查询 单行子查询 多行子查询 多列子查询 在from子句中使用子查询 合并查询 union union all 实战OJ 复合查询 前面我们讲解的mysql表的查询都是对一张表进行查询…

jenkins、ant、selenium、testng搭建自动化测试框架

如果在你的理解中自动化测试就是在eclipse里面讲webdriver的包引入&#xff0c;然后写一些测试脚本&#xff0c;这就是你所说的自动化测试&#xff0c;其实这个还不能算是真正的自动化测试&#xff0c;你见过每次需要运行的时候还需要打开eclipse然后去选择运行文件吗&#xff…

竞赛 深度学习人脸表情识别算法 - opencv python 机器视觉

文章目录 0 前言1 技术介绍1.1 技术概括1.2 目前表情识别实现技术 2 实现效果3 深度学习表情识别实现过程3.1 网络架构3.2 数据3.3 实现流程3.4 部分实现代码 4 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习人脸表情识别系…