计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)

车辆跟踪及测距

  • 该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。
  • 该项目使用了 YOLOv5目标检测算法和 DeepSORT
    目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!

教程博客_传送门链接------->单目测距和跟踪
在这里插入图片描述

yolov5 deepsort 行人/车辆(检测 +计数+跟踪+测距+测速)

  • 实现了局域的出/入 分别计数。
  • 显示检测类别,ID数量。
  • 默认是 南/北 方向检测,若要检测不同位置和方向,需要加以修改
  • 可在 count_car/traffic.py 点击运行
  • 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车、船。
  • 检测类别可在 objdetector.py 文件修改。

原文链接:https://blog.csdn.net/ALiLiLiYa/article/details/131819630
在这里插入图片描述

目标跟踪

  • YOLOv5是一种流行的目标检测算法,它是YOLO系列算法的最新版本。
  • YOLOv5采用了一种新的架构,可以在保持高准确性的同时提高检测速度。
  • 在本文中,我们将介绍如何使用YOLOv5_deepsort算法来进行船舶跟踪和测距。

教程博客_传送门链接------->目标跟踪
在这里插入图片描述

车道线识别

  • 本文主要讲述项目集成:从车道线识别、测距、到追踪,集各种流行模型于一体!
  • 不讲原理,直接上干货!
  • 把下文环境配置学会,受益终生!
  • 各大项目皆适用

教程博客_传送门链接------->车道线识别+目标检测
看下本项目的效果:
在这里插入图片描述

语义分割

  • MMsegmentation是一个基于PyTorch的图像分割工具库,
  • 它提供了多种分割算法的实现,包括语义分割、实例分割、轮廓分割等。
  • MMsegmentation的目标是提供一个易于使用、高效、灵活且可扩展的平台,以便开发者可以轻松地使用最先进的分割算法进行研究和开发

教程博客_传送门链接------->语义分割

在这里插入图片描述

姿态识别

  • 体姿态估计是计算机视觉中的一项重要任务
  • 具有各种应用,例如动作识别、人机交互和监控。
  • 近年来,基于深度学习的方法在人体姿态估计方面取得了显著的性能。
  • 其中最流行的深度学习方法之一是YOLOv7姿态估计模型


程博客_传送门链接------->:姿态识别https://blog.csdn.net/ALiLiLiYa/article/details/129482358
在这里插入图片描述

图像分类

  • 在本教程中,您将学习如何使用迁移学习训练卷积神经网络以进行图像分类。您可以在 cs231n 上阅读有关迁移学习的更多信息。
  • 本文主要目的是教会你如何自己搭建分类模型,耐心看完,相信会有很大收获。废话不多说,直切主题…
  • 首先们要知道深度学习大都包含了下面几个方面:

1.加载(处理)数据
2.网络搭建
3.损失函数(模型优化)
4 模型训练和保存

  • 把握好这些主要内容和流程,基本上对分类模型就大致有了个概念。

**教程博客_传送门链接--------->:图像分类
在这里插入图片描述

交通标志识别

  1. 项目是一个基于 OpenCV 的交通标志检测和分类系统
  2. 可以在视频中实时检测和分类交通标志。检测阶段使用图像处理技术,
  3. 在每个视频帧上创建轮廓并找出其中的所有椭圆或圆形。它们被标记为交通标志的候选项。

教程博客_传送门链接------->交通标志识别
在这里插入图片描述

表情识别、人脸识别

  • 面部情绪识别(FER)是指根据面部表情识别和分类人类情绪的过程。
  • 通过分析面部特征和模式,机器可以对一个人的情绪状态作出有根据的推断。
  • 这个面部识别的子领域高度跨学科,涉及计算机视觉、机器学习和心理学等领域的知识

教程博客_传送门链接------->表情识别
在这里插入图片描述

疲劳检测

  • 瞌睡经常发生在汽车行驶的过程中
  • 该行为害人害己,如果有一套能识别瞌睡的系统,那么无疑该系统意义重大!

教程博客_传送门链接------->疲劳检测
在这里插入图片描述

车牌识别

  • 用python3+opencv3做的中国车牌识别
  • 包括算法和客户端界面,只有2个文件,一个是界面代码,一个是算法代码
  • 点击即可出结果,方便易用!

链接:车牌识别
大致的UI界面如下,点击输入图片,右侧即可出现结果!
在这里插入图片描述

代码

额外说明:算法代码只有500行,测试中发现,车牌定位算法的参数受图像分辨率、色偏、车距影响。

--->qq 1309399183----------<代码交流
	def from_pic(self):
		self.thread_run = False
		self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
		if self.pic_path:
			img_bgr = predict.imreadex(self.pic_path)
			self.imgtk = self.get_imgtk(img_bgr)
			self.image_ctl.configure(image=self.imgtk)
			resize_rates = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4)
			for resize_rate in resize_rates:
				print("resize_rate:", resize_rate)
				r, roi, color = self.predictor.predict(img_bgr, resize_rate)
				if r:
					break
			#r, roi, color = self.predictor.predict(img_bgr, 1)
			self.show_roi(r, roi, color)

图像去雾去雨+目标检测+单目测距结合

  • 0.0实时感知本车周围物体的距离对高级驾驶辅助系统具有重要意义,当判定物体与本车距离小于安全距离时便采取主动刹车等安全辅助功,
  • 0.1这将进一步提升汽车的安全性能并减少碰撞的发生。上一章本文完成了目标检测任务,接下来需要对检测出来的物体进行距离测量。
  • 1.首先描述并分析了相机成像模型,推导了图像的像素坐标系与世界坐标系之间的关系。
  • 2.其次,利用软件标定来获取相机内外参数并改进了测距目标点的选取。
  • 3.最后利用测距模型完成距离的测量并对采集到的图像进行仿真分析和方法验证。
    传送门链接------------->:单目测距
    在这里插入图片描述

代码


        for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Warmup
        if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
            old_img_b = img.shape[0]
            old_img_h = img.shape[2]
            old_img_w = img.shape[3]
            for i in range(3):
                model(img, augment=opt.augment)[0]

        # Inference
        t1 = time_synchronized()
        with torch.no_grad():   # Calculating gradients would cause a GPU memory leak
            pred = model(img, augment=opt.augment)[0]
        t2 = time_synchronized()
         distance=object_point_world_position(u, v, h, w, out_mat, in_mat):

路径规划

本节针对越野场景路径规划问题,采用栅格法建立障碍物、威胁物和越野道路模型,模拟真实的越野环境场景。

  • 引入方向变化惩罚和局部区域复杂度惩罚来优化A算法,使算法规划出的路径更平滑,算法效率更高效。

  • 采用改进 Floyd 算法对路径进行双向平滑,并且进行了防碰撞处理,来确保规划出路径的安全可靠性。

  • 仿真结果表明,所改进的 A算法与传统算法相比较,效率提高了 30%,拐点数减少了4
    倍,所提算法能够在越野环境多重因素综合影响以及不同车辆性能和任务的要求下快速的规划出安全的路径。
    传送门链接---------------->:A star
    在这里插入图片描述

代码

###############创建A-Star类############
class AStar:
    
    # 描述AStar算法中的节点数据
    class Node:  
        #初始化
        def __init__(self, point, startPoint,endPoint, g=0,w=1,p=1):
            self.point = point  # 自己的坐标
            self.father = None  # 父节点
            self.g = g       # g值,g值在用到的时候会重新算
            
            # 计算h值,采用曼哈顿距离
            #self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  
            
            #采用欧几里得距离
            #self.h = math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5)*10
            
            #采用对角距离
            pp=(1-p)+0.2*math.exp((math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5))/(math.pow((math.pow((endPoint.x - startPoint.x),2) + math.pow((endPoint.y - startPoint.y),2)),0.5)))
            Diagonal_step = min((endPoint.x - point.x),(endPoint.y - point.y))
            straight_step = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) - 2*Diagonal_step
            self.h  =(straight_step + math.pow(2,0.5)*Diagonal_step)*10*pp
            #print(pp)


            
    #初始化A-start
    def __init__(self, map2d, startPoint, endPoint, passTag=1.0):#map2d地图信息,startPoint起点, endPoint终点, passTag=1.0为不可行驶区域

        # 开启表
        self.openList = []
        # 关闭表
        self.closeList = []
        # 寻路地图
        self.map2d = map2d
        # 起点终点
        if isinstance(startPoint, Point) and isinstance(endPoint, Point):
            self.startPoint = startPoint
            self.endPoint = endPoint
        else:
            self.startPoint = Point(*startPoint)
            self.endPoint = Point(*endPoint)
 
        # 不可行走标记
        self.passTag = passTag
 
    def getMinNode(self):
        """
        获得openlist中F值最小的节点
        :return: Node
        """
        currentNode = self.openList[0]
        for node in self.openList:
            if node.g + node.h < currentNode.g + currentNode.h:
                currentNode = node
        return currentNode#返回最小代价的点
 

停车位检测

  • 基于深度学习的鱼眼图像中的停车点检测和分类是为二维物体检测而开发的。我们的工作增强了预测关键点和方框的能力。这在许多场景中很有用,因为对象不能用右上的矩形“紧密”表示。
  • 一个这样的例子,道路上的任何标记,由于透视效果,在现实世界中的对象矩形不会在图像中保持矩形,所以关键点检测显得格外重要。鱼眼图像还呈现了观察到这种现象的另一种场景,由于鱼眼宽广的视角,可以扑捉更多画像

链接:停车位检测

在这里插入图片描述

代码

#全部代码可加qq1309399183
def train():
    #parses command line args
    args = parse_args()

    #parses args from file
    if args.config_file is not None:
        cfg_from_file(args.config_file)

    if (args.FIX_MODEL_CHECKPOINT):
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace(" ", "")
      args.FIX_MODEL_CHECKPOINT = args.FIX_MODEL_CHECKPOINT.replace("=", "")
      cfg.RESUME_CHECKPOINT = args.FIX_MODEL_CHECKPOINT
      cfg.CHECK_PREVIOUS = False
      if (os.path.exists(cfg.RESUME_CHECKPOINT) == False):
          print('Exiting the process as asked model for resuming is not found')
          exit()

    if (args.RESUME_CHECKPOINT):
      cfg.RESUME_CHECKPOINT = args.RESUME_CHECKPOINT

    if (args.LOG_DIR):
      cfg.EXP_DIR = args.LOG_DIR

    cfg.LOG_DIR = cfg.EXP_DIR

    if (args.PHASE):
      cfg.PHASE = []
      cfg.PHASE.append(args.PHASE)

    if (args.EVAL_METHOD):
      cfg.DATASET.EVAL_METHOD = args.EVAL_METHOD

    #for backward compatibility
    if cfg.DATASET.DATASET == 'psd':
      cfg.DATASET.DATASET = 'tiod'

    if cfg.DATASET.BGR_OR_RGB == True:
        #cfg.DATASET.PIXEL_MEANS = (123.68, 116.78, 103.94)
        #cfg.DATASET.PIXEL_MEANS = (123, 117, 104)
        cfg.DATASET.PIXEL_MEANS = (128.0, 128.0, 128.0) # simpler mean subtraction to keep data in int8 after mean subtraction

    print("cfg: ", cfg)

    for phase in cfg.PHASE:
      cfg_dir = cfg.LOG_DIR + '/' + phase + '_cfg/'
      os.makedirs(os.path.dirname(cfg_dir), exist_ok=True)
      shutil.copy(args.config_file, cfg_dir)

    # to making every run consistent # TII
    np.random.seed(100)
    torch.manual_seed(100)
    torch.cuda.manual_seed(100)
    random.seed(100)
    torch.cuda.manual_seed_all(999)
    torch.backends.cudnn.enabled = False

    train_model()

if __name__ == '__main__':
    train()

图像雾去雨与目标检测

  • 针对不同的天气则采取不同的图像前处理方法来提升图像质量。
  • 雾天天气 时,针对当下求解的透射率会导致去雾结果出现光晕、伪影现象,本文采用加权最小二乘法细化透射率透。
  • 针对四叉树法得到的大气光值不精确的问题,改进四叉树法来解决上述问题。将上述得到的透射率和大气光值代入大气散射模型完成去雾处理;
  • 在图像处理后加入目标检测,提高了目标检测精度以及目标数量。

下图展现了雾天处理后的结果
图第一列为雾霾图像,第二列为没有加入图像处理的目标检测结果图,第三列为去雾后的目标检测结果图。

在这里插入图片描述

无人机检测

  • 反无人机目标检测与跟踪的意义在于应对无人机在现实世界中可能带来的潜在威胁,并保障空域安全。以下是这方面的几个重要意义:
  • 空域安全:无人机的广泛应用给空域安全带来了新的挑战。通过开展反无人机目标检测与跟踪研究,可以及时发现和追踪潜在的无人机入侵行为,确保空域的安全和秩序。
  • 防范恶意活动:无人机技术的快速发展也为一些恶意活动提供了新的工具和手段,如无人机进行窥探、非法监听、破坏等。反无人机目标检测与跟踪的研究可以帮助及时发现和阻止这些恶意活动,维护社会的稳定和安全


传送门链接-------------->:无人机检测

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/104327.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

双向电平电压转换器TXS0102DCTR应用电路设计

1、TXS0102简介 TXS0102DCTR是一个2位双向电压电平转换器&#xff0c;主要用途是与数据I/O&#xff08;例如I2C或1-wire&#xff09;上的开漏驱动器连接&#xff08;其中数据是双向的且无可用的控制信号&#xff09;&#xff0c;在混合电压系统之间建立数字开关兼容性。它使用…

保存 uboot图像配置

一. 简介 本文学习如何保存经过图像配置&#xff0c;与加载 自己的配置文件。 之前几篇文章学习了&#xff1a;uboot 经过图形化配置 dns 命令功能。地址如下&#xff1a; uboot通过图像化界面配置 dns命令-CSDN博客 uboot通过图像化界面配置 dns命令验证-CSDN博客 二. 保…

【C++基础入门】42.C++中同名覆盖引发的问题

一、父子间的赋值兼容 子类对象可以当作父类对象使用&#xff08;兼容性) 子类对象可以直接赋值给父类对象子类对象可以直接赋值给父类对象父类指针可以直接指向子类对象父类引用可以直接引用子类对象 下面看一个子类对象兼容性的代码&#xff1a; #include <iostream>…

大模型在数据分析场景下的能力评测

“你们能对接国产大模型吗&#xff1f;” “开源的 LLaMA 能用吗&#xff0c;中文支持怎么样&#xff1f;” “私有化部署和在线服务哪个更合适&#xff1f;” 自 7 月 14 日发布 AI 数智助理 Kyligence Copilot 后&#xff0c;我们收到了很多类似上面的咨询&#xff0c;尤其…

如何处理单据保存/审核时提示:“更新即时库存时,基本单位数量与辅单位数量为一正一负,即时库存更新不成功

文章目录 如何处理单据保存/审核时提示:“更新即时库存时,基本单位数量与辅单位数量为一正一负,即时库存更新不成功问题描述前提问题分析&#xff1a;解决方案 如何处理单据保存/审核时提示:“更新即时库存时,基本单位数量与辅单位数量为一正一负,即时库存更新不成功 问题描述…

使用C# RDLC环境搭建

搭建C# RDLC环境 在vs环境中&#xff0c;菜单扩展>管理扩展 用来打开报表文件的 用来新建报表文件的 搜索Microsoft Reporting Services Projects 选择第一个进行下载 安装完以上两个即可进行报表文件的创建和预览 reportview组件 推荐nuget安装&#xff1a;Install-…

前后端交互—跨域与HTTP

跨域 代码下载 同源策略 同源策略(英文全称 Same origin policy)是浏览器提供的一个安全功能。 MDN 官方给定的概念:同源策略限制了从同一个源加载的文档或脚本如何与来自另一个源的资源进行交互。这 是一个用于隔离潜在恶意文件的重要安全机制。 通俗的理解:浏览器规定&a…

拆贡献+统计非法可能不统计非法贡献:ARC150D

https://atcoder.jp/contests/arc150/tasks/arc150_d 先拆贡献成每个点&#xff0c;然后就只需要考虑这条链上的情况了 我们现在要求的是&#xff1a; 在所有点选完之前&#xff0c;最后一个点被选了多少次 我们发现这很难做&#xff0c;但有个性质&#xff1a; 在所有点选…

CLion使用SSH远程连接Linux服务器

最近要一直用实验室的服务器写Linux下的C代码, 本来一直用VScode(SSH)连接服务器, 但是我以前还是用JetBrains的IDE用的多, 毕竟他家的IDE代码提示和功能在某些细节上更加丰富。所以这次我使用了Clion里的远程连接(同样也是SSH工具)连接上了我的服务器, 实现了和VScode上同样的…

计算机网络-计算机网络体系结构-应用层

目录 一、网络应用模型 客户/服务器模型(Client/Server) P2P模型(Peer-to-peer) 二、域名解析系统(DNS) 域名 域名服务器 解析过程 三、文件传输协议(FTP) FTP控制原理 四、电子邮件 组成结构 协议 SMTP MIME POP3 IMAP 五、万维网和HTTP协议 概述 HTTP 报…

Python---for循环中的两大关键字break和continue

之前在while循环中&#xff0c;也是用到两个关键字。 相关链接&#xff1a; 所以&#xff0c;在循环结构中都存在两个关键字&#xff1a;break和continue break&#xff1a;主要功能是终止整个循环 break&#xff1a;代表终止整个循环结构 continue&#xff1a;代表中止当…

selenium元素定位之xpath

一、找父级节点parent xpath&#xff1a;//span[text()保存]/parent::button 说明&#xff1a;先找到span标签&#xff0c;再找到父级button 一、找同级的上方标签preceding-sibling xpath&#xff1a;//span[text()保存]/parent::button/preceding-sibling::button[1] 说明…

基于Java的足球赛会管理系统设计与实现(源码+lw+部署文档+讲解等)

文章目录 前言具体实现截图论文参考详细视频演示为什么选择我自己的网站自己的小程序&#xff08;小蔡coding&#xff09; 代码参考数据库参考源码获取 前言 &#x1f497;博主介绍&#xff1a;✌全网粉丝10W,CSDN特邀作者、博客专家、CSDN新星计划导师、全栈领域优质创作者&am…

计算机网络——计算机网络体系结构(4/4)-计算机网络体系结构中的专用术语(实体、协议、服务,三次握手‘三报文握手’、数据包术语)

目录 分类一——实体 实体 对等实体 分类二——协议 协议 协议的三要素 分类三——服务 服务 服务访问点 数据包术语 计算机网络体系结构中的专用术语 本篇所讲的专用术语来源于OSI的七层协议体系结构&#xff0c;但也适用于TCP/IP的四层体系结构和五层协议原理体系…

JVM(二)

一,运行时数据区 Java虚拟机在运行Java程序过程中管理的内存区域,称之为运行时数据区。 1.1 程序计数器 程序计数器(Program Counter Register)也叫PC寄存器,每个线程会通过程序计数器记录当前要执行的的字 节码指令的地址。 在加载阶段,虚拟机将字节码文件中的指令读…

Qt篇——子控件QLayoutItem与实际控件的强转

方法&#xff1a;使用qobject_cast<QLabel*>() &#xff0c;将通过itemAt(i)获取到的子控件(QLayoutItem)强转为子控件的实际类型(如QLineEdit、QLabel等)。 场景举例&#xff1a; QLabel *label qobject_cast<QLabel*>(ui->horizontalLayout_40->itemAt(0…

最新SQL注入漏洞修复建议

点击星标&#xff0c;即时接收最新推文 本文选自《web安全攻防渗透测试实战指南&#xff08;第2版&#xff09;》 点击图片五折购书 SQL注入漏洞修复建议 常用的SQL注入漏洞的修复方法有两种。 1&#xff0e;过滤危险字符 多数CMS都采用过滤危险字符的方式&#xff0c;例如&…

Biotech - 环状 mRNA 的 LNP 递送系统 与 成环框架

欢迎关注我的CSDN&#xff1a;https://spike.blog.csdn.net/ 本文地址&#xff1a;https://spike.blog.csdn.net/article/details/133992971 环状 RNA&#xff08;或 circRNA &#xff09;是一种单链 RNA&#xff0c;与线性 RNA 不同&#xff0c;形成一个共价闭合的连续环。在环…

Node编写更新用户头像接口

目录 定义路由和处理函数 验证表单数据 ​编辑 实现更新用户头像的功能 定义路由和处理函数 向外共享定义的更新用户头像处理函数 // 更新用户头像的处理函数 exports.updateAvatar (req, res) > {res.send(更新成功) } 定义更新用户头像路由 // 更新用户头像的路由…

怒刷LeetCode的第28天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一&#xff1a;动态规划 方法二&#xff1a;迭代 方法三&#xff1a;斐波那契数列公式 第二题 题目来源 题目内容 解决方法 方法一&#xff1a;栈 方法二&#xff1a;路径处理类 方法三&#xff1a;正则表达式 方法…