【Overload游戏引擎细节分析】standard材质Shader

提示:Shader属于GPU编程,难写难调试,阅读本文需有一定的OpenGL基础,可以写简单的Shader,不适合不会OpenGL的朋友

一、Blinn-Phong光照模型

Blinn-Phong光照模型,又称为Blinn-phong反射模型(Blinn–Phong reflection model)或者 phong 修正模型(modified Phong reflection model),是由 Jim Blinn于 1977 年在文章中对传统 phong 光照模型基础上进行修改提出的。它是一个经验模型,并不完全符合真实世界中的光照现象,但由于实现起来简单方便,并且计算速度和得到的效果都还不错,因此在早期被广泛的使用。
相对于Phong模型,Blinn-Phong是对高光部分进行简化计算,对于环境光、漫反射计算是一样的。环境光、漫反射一般处理如下:

  • 环境光:是光线经过周围环境表面多次反射后形成的,利用它可以描述一块区域的亮度,在光照模型中,通常用一个常量来表示;
  • 漫反射:当光线照射到一个点时,该光线会被均匀的反射到各个方向,这种反射称为漫反射。也就是说,在漫反射中,视角的位置是不重要的,因为反射是完全随机的,因此可以认为漫反射光在任何反射方向上的分布都是一样的,一般可使用Lambert余弦定律计算。
  • 高光反射(Specular): 也称镜面光,若物体表面很光滑,当平行入射的光线射到这个物体表面时,仍会平行地向一个方向反射出来。

高光计算

直接上结论,因为这个模型资料很多,大家可以参考https://zhuanlan.zhihu.com/p/442023993

在这里插入图片描述
h = l + v ∣ l ∣ + ∣ v ∣ h=\frac{l+v}{\left | l \right | + \left | v \right | } h=l+vl+v
L s = k s I ∗ m a x ( 0 , c o s ( α ) ) p = k s I ∗ m a x ( 0 , n ⋅ h ) p L_{s}=k_{s}I*max(0, cos(\alpha))^{p}=k_{s}I*max(0, n\cdot h)^{p} Ls=ksImax(0,cos(α))p=ksImax(0,nh)p
h——半程向量
Ls——高光颜色
k s k_{s} ks—— 高光反射系数
n——反光度因子

Overload中计算Blinn-Phong光照模型的shader代码如下:

/*
* BlinnPhong模型,只计算漫反射与高光
* p_LightColor: 光强
* p_LightDir:光源方向
* p_Luminosity:衰减系数
*/
vec3 BlinnPhong(vec3 p_LightDir, vec3 p_LightColor, float p_Luminosity)
{
    // 半程向量
    const vec3  halfwayDir          = normalize(p_LightDir + g_ViewDir); // 计算半程向量
    const float diffuseCoefficient  = max(dot(g_Normal, p_LightDir), 0.0); // Lambert余弦
    const float specularCoefficient = pow(max(dot(g_Normal, halfwayDir), 0.0), u_Shininess * 2.0);

    // 片元颜色:光强 * 漫反射系数 * cos(theta) * 衰减因子 + 光强 * 高光反射系数 * 高光指数 * 衰减因子
    return p_LightColor * g_DiffuseTexel.rgb * diffuseCoefficient * p_Luminosity + ((p_Luminosity > 0.0) ? (p_LightColor * g_SpecularTexel.rgb * specularCoefficient * p_Luminosity) : vec3(0.0));
}

二、不同光源计算

常见的光源有:平行光、点光源、聚光灯,他们的具体定义及计算可参考:https://learnopengl-cn.readthedocs.io/zh/latest/02%20Lighting/05%20Light%20casters/,里面讲的比较详细。

光源数据

不同的光源有不同的数据,而且场景中光源数量也是不确定的,所以这种情况了Overload使用OpenGL的SSBO传递数据。光源数据转换成一个矩阵,转换代码如下:

OvMaths::FMatrix4 OvRendering::Entities::Light::GenerateMatrix() const
{
	OvMaths::FMatrix4 result;

    // 存放光源位置(对应平行光存放的是方向)
	auto position = m_transform.GetWorldPosition();
	result.data[0] = position.x;
	result.data[1] = position.y;
	result.data[2] = position.z;

    // 光源朝向
	auto forward = m_transform.GetWorldForward();
	result.data[4] = forward.x;
	result.data[5] = forward.y;
	result.data[6] = forward.z;

    // 光源颜色
	result.data[8] = static_cast<float>(Pack(color));

    // 聚光灯参数
	result.data[12] = type;
	result.data[13] = cutoff;
	result.data[14] = outerCutoff;

    // 光源的衰减参数
	result.data[3] = constant;
	result.data[7] = linear;
	result.data[11] = quadratic;
    // 光源强度
	result.data[15] = intensity;

	return result;
}

Pack函数是将光颜色RGBA变成一个32位无符号整数,感兴趣可以看看,这种做法经常会见到。要想具体查看每种光源数据,可以使用RenderDoc进行查看,加深对每种光源数据的认识。RenderDoc是Shader编写利器,而且学起来也不难。
在这里插入图片描述

三、Overload中Standard材质的shader

Overload的材质如何创建就不再讲了,上节已经讲过的。打开一个材料例子,编辑可看到其可设置漫反射、高度、mask、法线、高光贴图,以及其他shader中使用的参数。
在这里插入图片描述
Shader是实现材质的核心,下面分析其代码。Standard材质的Shader在Standard.glsl文件中。

Vertex Shader

其Vertext shader代码如下:

#shader vertex
#version 430 core

/*顶点着色器的入参*/
layout (location = 0) in vec3 geo_Pos; // 顶点坐标
layout (location = 1) in vec2 geo_TexCoords; // 顶点纹理坐标
layout (location = 2) in vec3 geo_Normal; // 顶点法线
layout (location = 3) in vec3 geo_Tangent; // 顶点的切线
layout (location = 4) in vec3 geo_Bitangent; // 顶点切线与法线的叉乘,三者组成一个本地坐标系

/* Global information sent by the engine */
layout (std140) uniform EngineUBO
{
    mat4    ubo_Model; // 模型矩阵
    mat4    ubo_View;  // 视图矩阵
    mat4    ubo_Projection; // 投影矩阵
    vec3    ubo_ViewPos; // 摄像机位置
    float   ubo_Time;
};

/* Information passed to the fragment shader */
out VS_OUT
{
    vec3        FragPos; // 顶点的全局坐标
    vec3        Normal; // 顶点法线
    vec2        TexCoords; // 纹理坐标
    mat3        TBN;
    flat vec3   TangentViewPos;
    vec3        TangentFragPos;
} vs_out;

void main()
{
    vs_out.TBN = mat3    // 全局坐标系到本地坐标系的旋转矩阵
    (
        normalize(vec3(ubo_Model * vec4(geo_Tangent,   0.0))),
        normalize(vec3(ubo_Model * vec4(geo_Bitangent, 0.0))),
        normalize(vec3(ubo_Model * vec4(geo_Normal,    0.0)))
    );

    mat3 TBNi = transpose(vs_out.TBN); // 为什么要转置?

    vs_out.FragPos          = vec3(ubo_Model * vec4(geo_Pos, 1.0)); // 全局坐标系的下的坐标
    vs_out.Normal           = normalize(mat3(transpose(inverse(ubo_Model))) * geo_Normal); // 全局坐标系下的法线
    vs_out.TexCoords        = geo_TexCoords; // 纹理坐标,不用变
    vs_out.TangentViewPos   = TBNi * ubo_ViewPos;
    vs_out.TangentFragPos   = TBNi * vs_out.FragPos;

    gl_Position = ubo_Projection * ubo_View * vec4(vs_out.FragPos, 1.0);
}

其输入是顶点信息,包括顶点的坐标、法线、纹理、切线、切线与法线的叉乘。其实一般如无需特殊需求,模型只需坐标、法线、纹理即可。这里的geo_Bitangent看着像是切线与法线的叉乘,但使用RenderDoc获取顶点着色器的输入发现geo_Bitangent与切线与法线的叉乘很接近,但并不完全相等。所以geo_Bitangent究竟是不是切线与法线的叉乘不是完全肯定,但对我们看源码影响不大,暂且认为他们三个正好组成一个本地坐标系吧。
看其main函数,计算顶点全局坐标、法线、NDC坐标。注意,法线是用模型矩阵 ( M − 1 ) T (M^{-1})^{T} (M1)T转换得到。VS_OUT中的输出量会插值,最后输给片元着色器。

片元着色器

再来看片元Shader:

#shader fragment
#version 430 core

/* Global information sent by the engine */
layout (std140) uniform EngineUBO
{
    mat4    ubo_Model;
    mat4    ubo_View;
    mat4    ubo_Projection;
    vec3    ubo_ViewPos;
    float   ubo_Time;
};

/* Information passed from the fragment shader */
in VS_OUT
{
    vec3        FragPos;
    vec3        Normal;
    vec2        TexCoords;
    mat3        TBN;
    flat vec3   TangentViewPos;
    vec3        TangentFragPos;
} fs_in;

/* Light information sent by the engine */
layout(std430, binding = 0) buffer LightSSBO
{
    mat4 ssbo_Lights[];
};

/* Uniforms (Tweakable from the material editor) */
uniform vec2        u_TextureTiling           = vec2(1.0, 1.0);
uniform vec2        u_TextureOffset           = vec2(0.0, 0.0);
uniform vec4        u_Diffuse                 = vec4(1.0, 1.0, 1.0, 1.0);
uniform vec3        u_Specular                = vec3(1.0, 1.0, 1.0);
uniform float       u_Shininess               = 100.0;
uniform float       u_HeightScale             = 0.0;
uniform bool        u_EnableNormalMapping     = false;
uniform sampler2D   u_DiffuseMap;
uniform sampler2D   u_SpecularMap;
uniform sampler2D   u_NormalMap;
uniform sampler2D   u_HeightMap;
uniform sampler2D   u_MaskMap;

/* Global variables */
vec3 g_Normal;
vec2 g_TexCoords;
vec3 g_ViewDir;
vec4 g_DiffuseTexel;
vec4 g_SpecularTexel;
vec4 g_HeightTexel;
vec4 g_NormalTexel;

out vec4 FRAGMENT_COLOR;

vec3 UnPack(float p_Target)
{
    return vec3
    (
        float((uint(p_Target) >> 24) & 0xff)    * 0.003921568627451,
        float((uint(p_Target) >> 16) & 0xff)    * 0.003921568627451,
        float((uint(p_Target) >> 8) & 0xff)     * 0.003921568627451
    );
}

bool PointInAABB(vec3 p_Point, vec3 p_AabbCenter, vec3 p_AabbHalfSize)
{
    return
    (
        p_Point.x > p_AabbCenter.x - p_AabbHalfSize.x && p_Point.x < p_AabbCenter.x + p_AabbHalfSize.x &&
        p_Point.y > p_AabbCenter.y - p_AabbHalfSize.y && p_Point.y < p_AabbCenter.y + p_AabbHalfSize.y &&
        p_Point.z > p_AabbCenter.z - p_AabbHalfSize.z && p_Point.z < p_AabbCenter.z + p_AabbHalfSize.z
    );
}

vec2 ParallaxMapping(vec3 p_ViewDir)
{
    const vec2 parallax = p_ViewDir.xy * u_HeightScale * texture(u_HeightMap, g_TexCoords).r;
    return g_TexCoords - vec2(parallax.x, 1.0 - parallax.y);
}

/*
* BlinnPhong模型,只计算漫反射与高光
* p_LightColor: 光强
* p_LightDir:光源方向
* p_Luminosity:衰减系数
*/
vec3 BlinnPhong(vec3 p_LightDir, vec3 p_LightColor, float p_Luminosity)
{
    // 半程向量
    const vec3  halfwayDir          = normalize(p_LightDir + g_ViewDir);
    const float diffuseCoefficient  = max(dot(g_Normal, p_LightDir), 0.0); // Lambert余弦
    const float specularCoefficient = pow(max(dot(g_Normal, halfwayDir), 0.0), u_Shininess * 2.0);

    // 片元颜色:光强 * 漫反射系数 * cos(theta) * 衰减因子 + 光强 * 高光反射系数 * 高光指数 * 衰减因子
    return p_LightColor * g_DiffuseTexel.rgb * diffuseCoefficient * p_Luminosity + ((p_Luminosity > 0.0) ? (p_LightColor * g_SpecularTexel.rgb * specularCoefficient * p_Luminosity) : vec3(0.0));
}

// 计算衰减因子,跟LearnOpenGL中的公式一致
float LuminosityFromAttenuation(mat4 p_Light)
{
    const vec3  lightPosition   = p_Light[0].rgb;
    const float constant        = p_Light[0][3];
    const float linear          = p_Light[1][3];
    const float quadratic       = p_Light[2][3];

    const float distanceToLight = length(lightPosition - fs_in.FragPos);
    const float attenuation     = (constant + linear * distanceToLight + quadratic * (distanceToLight * distanceToLight));
    return 1.0 / attenuation;
}

vec3 CalcPointLight(mat4 p_Light)
{
    /* Extract light information from light mat4 */
    const vec3 lightPosition  = p_Light[0].rgb;  // 光源位置
    const vec3 lightColor     = UnPack(p_Light[2][0]); // 光源颜色
    const float intensity     = p_Light[3][3]; // 光强

    const vec3  lightDirection  = normalize(lightPosition - fs_in.FragPos); // 光源方向
    const float luminosity      = LuminosityFromAttenuation(p_Light); // 衰减因子

    return BlinnPhong(lightDirection, lightColor, intensity * luminosity);
}

vec3 CalcDirectionalLight(mat4 light)
{
    return BlinnPhong(-light[1].rgb, UnPack(light[2][0]), light[3][3]);
}

vec3 CalcSpotLight(mat4 p_Light)
{
    /* Extract light information from light mat4 */
    const vec3  lightPosition   = p_Light[0].rgb;   // 聚光灯位置
    const vec3  lightForward    = p_Light[1].rgb;   // 聚光灯朝向
    const vec3  lightColor      = UnPack(p_Light[2][0]); // 光源颜色
    const float intensity       = p_Light[3][3];  // 光强
    const float cutOff          = cos(radians(p_Light[3][1])); // 内圆锥角 
    const float outerCutOff     = cos(radians(p_Light[3][1] + p_Light[3][2])); // 内圆锥角 + 外圆锥角 

    const vec3  lightDirection  = normalize(lightPosition - fs_in.FragPos); // 光方向
    const float luminosity      = LuminosityFromAttenuation(p_Light);  // 衰减因子

    /* Calculate the spot intensity */
    const float theta           = dot(lightDirection, normalize(-lightForward)); // cos(theta)
    const float epsilon         = cutOff - outerCutOff;    // 内部圆锥角与外部圆锥角之差
    const float spotIntensity   = clamp((theta - outerCutOff) / epsilon, 0.0, 1.0); // 边缘软化
    
    return BlinnPhong(lightDirection, lightColor, intensity * spotIntensity * luminosity);
}

vec3 CalcAmbientBoxLight(mat4 p_Light)
{
    const vec3  lightPosition   = p_Light[0].rgb;
    const vec3  lightColor      = UnPack(p_Light[2][0]);
    const float intensity       = p_Light[3][3];
    const vec3  size            = vec3(p_Light[0][3], p_Light[1][3], p_Light[2][3]);

    return PointInAABB(fs_in.FragPos, lightPosition, size) ? g_DiffuseTexel.rgb * lightColor * intensity : vec3(0.0);
}

vec3 CalcAmbientSphereLight(mat4 p_Light)
{
    const vec3  lightPosition   = p_Light[0].rgb;
    const vec3  lightColor      = UnPack(p_Light[2][0]);
    const float intensity       = p_Light[3][3];
    const float radius          = p_Light[0][3];

    return distance(lightPosition, fs_in.FragPos) <= radius ? g_DiffuseTexel.rgb * lightColor * intensity : vec3(0.0);
}

void main()
{
    g_TexCoords = u_TextureOffset + vec2(mod(fs_in.TexCoords.x * u_TextureTiling.x, 1), mod(fs_in.TexCoords.y * u_TextureTiling.y, 1));  // 计算纹理贴图坐标

    /* Apply parallax mapping */
    if (u_HeightScale > 0)  // 使用高度贴图
        g_TexCoords = ParallaxMapping(normalize(fs_in.TangentViewPos - fs_in.TangentFragPos));

    /* Apply color mask */
    if (texture(u_MaskMap, g_TexCoords).r != 0.0) // 可以通过u_MaskMap屏蔽部分区域
    {
        g_ViewDir           = normalize(ubo_ViewPos - fs_in.FragPos); // 视线方向(视点坐标-片元坐标)
        g_DiffuseTexel      = texture(u_DiffuseMap,  g_TexCoords) * u_Diffuse; // 漫反射颜色
        g_SpecularTexel     = texture(u_SpecularMap, g_TexCoords) * vec4(u_Specular, 1.0); // 高光项的颜色

        if (u_EnableNormalMapping) // 使用法线贴图
        {
            g_Normal = texture(u_NormalMap, g_TexCoords).rgb;
            g_Normal = normalize(g_Normal * 2.0 - 1.0);   
            g_Normal = normalize(fs_in.TBN * g_Normal);
        }
        else
        {
            g_Normal = normalize(fs_in.Normal);
        }

        vec3 lightSum = vec3(0.0);

        // 对灯光进行循环,计算每盏灯的贡献
        for (int i = 0; i < ssbo_Lights.length(); ++i)
        {
            switch(int(ssbo_Lights[i][3][0]))
            {
                case 0: lightSum += CalcPointLight(ssbo_Lights[i]);         break; // 计算点光源
                case 1: lightSum += CalcDirectionalLight(ssbo_Lights[i]);   break; // 计算
                case 2: lightSum += CalcSpotLight(ssbo_Lights[i]);          break; // 计算聚光灯
                case 3: lightSum += CalcAmbientBoxLight(ssbo_Lights[i]);    break;
                case 4: lightSum += CalcAmbientSphereLight(ssbo_Lights[i]); break;
            }
        }

        FRAGMENT_COLOR = vec4(lightSum, g_DiffuseTexel.a);
    }
    else
    {
        FRAGMENT_COLOR = vec4(0.0);
    }
}

Fragment Sahder代码看着很多,拆解一下就是分别计算各个灯光的贡献,进行累加。计算每种灯光时,最终都是使用Blinn-Phonge模型计算的。每种类型的灯光基本与LearnOpenGL中的描述一致。UnPack函数可以学习一下,看看如何float如何变成RGB。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/104154.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

苹果将于8月31日举行今秋的第二场发布会

在今日凌晨&#xff0c;苹果宣布&#xff0c;将于北京时间10月31日早上8点举行今秋的第二场发布会&#xff0c;主题为“来势迅猛”。据多方猜测苹果本次活动的核心产品大概率是搭载全新M3芯片的Mac系列产品。 据了解&#xff0c;在苹果的产品线中&#xff0c;搭载M3芯片的Mac系…

Stable Diffusion WebUI扩展canvas-zoom详细讲解

canvas-zoom这是什么? 这是一个针对画布做一些操作的工具,比如缩放等。 下面来详细说一下这些操作的热键。 重要的热键: 缩放(Alt+滚轮)、移动画布 (F)、全屏 (S) 和重置缩放 (R) (1)Shift + wheel - 缩放画布 按住Shift + 滚轮之后,一点反应都没有,之后按…

vue3检测是手机还是pc端,监测视图窗口变化

1.超小屏幕&#xff08;手机&#xff09; 768px以下 2.小屏设备&#xff08;平板&#xff09; 768px-992px 3.中等屏幕&#xff08;旧式电脑&#xff09; 992px-1200px 4.大屏设备&#xff08;现代电脑&#xff09; 1200px以上 <script setup name"welcome"> i…

Games104现代游戏引擎笔记 网络游戏架构基础

挑战1:网络同步 挑战2:是网络的可靠性&#xff0c;包括应对网络的延迟&#xff0c;丢包和掉线 挑战3: 反作弊和安全系统&#xff0c;因为网络游戏的本质是经济系统 挑战4:多样性(不同设备&#xff0c;不同服务器)&#xff0c;在不停服的情况下热更新 挑战5:大量人数时对高并发…

为什么POST请求经常发送两次?

大多数初级前端程序员&#xff0c;在通过浏览器F12的调试工具调试网络请求时&#xff0c;可能都会有一个发现&#xff0c;在进行POST请求时&#xff0c;明明代码里只请求了一次&#xff0c;为什么network里发送了两次呢&#xff0c;难道我代码出bug了&#xff1f;带着疑问点开第…

javascript原生态xhr上传多个图片,可预览和修改上传图片为固定尺寸比例,防恶意代码,加后端php处理图片

//前端上传文件 <!DOCTYPE html> <html xmlns"http://www.w3.org/1999/xhtml" lang"UTF-8"></html> <html><head><meta http-equiv"Content-Type" content"text/html;charsetUTF-8;"/><title…

npm改变npm缓存路径和改变环境变量

在安装nodejs时&#xff0c;系统会自动安装在系统盘C&#xff0c; 时间久了经常会遇到C盘爆满&#xff0c;有时候出现红色&#xff0c;此时才发现很多时候是因为npm 缓存保存在C盘导致的&#xff0c;下面就介绍下如何改变npm缓存路径。 1、首先找到安装nodejs的路径&#xff0c…

【微信小程序】实现投票功能(附源码)

一、Vant Weapp介绍 Vant Weapp 是一个基于微信小程序的组件库&#xff0c;它提供了丰富的 UI 组件和交互功能&#xff0c;能够帮助开发者快速构建出现代化的小程序应用。Vant Weapp 的设计理念注重简洁、易用和高效&#xff0c;同时提供灵活的定制化选项&#xff0c;以满足开发…

【Redis】redis 十大数据类型 概述

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ redis十大数据类型 一、redis字符串&#xff0…

jenkins配置gitlab凭据

下载Credentials Binding插件&#xff08;默认是已经安装了&#xff09; 在凭据配置里添加凭据类型 点击保存 Username with password&#xff1a; 用户名和密码 SSH Username with private 在凭据管理里面添加gitlab账号和密码 点击全局 点击添加凭据&#xff08;版本不同…

Spring实例化源码解析之Bean的实例化(十二)

前言 本章开始分析finishBeanFactoryInitialization(beanFactory)方法&#xff0c;直译过来就是完成Bean工厂的初始化&#xff0c;这中间就是非lazy单例Bean的实例化流程。ConversionService在第十章已经提前分析了。重点就是最后一句&#xff0c;我们的bean实例化分析就从这里…

数据结构——栈与队列

目录 1. 中缀表达式转换为后缀表达式 2. 括号匹配问题 3. 栈实现队列 4. 约瑟夫环 1. 中缀表达式转换为后缀表达式 【问题描述】 输入一个中缀表达式&#xff0c;表达式中有、-、*、/四种运算以及&#xff08;、&#xff09;&#xff0c;表达式中的其他符号为大写的字母。实…

互联网Java工程师面试题·Spring篇·第五弹

目录 1、什么是 spring? 2、使用 Spring 框架的好处是什么&#xff1f; 3、Spring 由哪些模块组成? 4、核心容器&#xff08;应用上下文) 模块。 5、BeanFactory – BeanFactory 实现举例。 6、XMLBeanFactory 7、解释 AOP 模块 8、解释 JDBC 抽象和 DAO 模块。 9、…

javaEE -7(网络原理初识 --- 7000字)

一&#xff1a;网络初识 计算机的独立模式是指多台计算机在网络中相互独立运行&#xff0c;彼此之间不共享资源或信息。在早期&#xff0c;计算机主要采用独立模式&#xff0c;每台计算机都拥有自己的操作系统、应用程序和数据&#xff0c;它们之间没有直接的连接或通信。 在…

【Spring Boot 源码学习】HttpEncodingAutoConfiguration 详解

Spring Boot 源码学习系列 HttpEncodingAutoConfiguration 详解 引言往期内容主要内容1. CharacterEncodingFilter2. HttpEncodingAutoConfiguration2.1 加载自动配置组件2.2 过滤自动配置组件2.2.1 涉及注解2.2.2 characterEncodingFilter 方法2.2.3 localeCharsetMappingsCus…

【开源框架】Glide的图片加载流程

引入依赖 以下的所有分析都是基于此版本的Glide分析 //引入第三方库glide implementation com.github.bumptech.glide:glide:4.11.0 annotationProcessor com.github.bumptech.glide:compiler:4.11.0分析 Glide的使用就是短短的一行代码 Glide.with(this).load("xxx&q…

01.MySQL(SQL分类及使用)

注意&#xff1a;DML只是进行增删改&#xff0c;DQL才有查询 分类全称说明DDLData Definition Language数据定义语言&#xff0c;用来定义数据库对象&#xff08;数据库&#xff0c;表&#xff0c;字段&#xff09;DMLData Manipulation Language数据操作语言&#xff0c;用来…

STM32-通用定时器

通用定时器 通用定时器由一个可编程预分频器驱动的16位自动重新加载计数器组成。应用&#xff1a;测量输入的脉冲长度信号&#xff08;输入捕获&#xff09;、产生输出波形&#xff08;输出比较和PWM&#xff09;。 脉冲长度和波形周期可以从几微秒调制到几毫秒&#xff0c;使用…

*Django中的Ajax 纯js的书写样式1

搭建项目 建立一个Djano项目&#xff0c;建立一个app&#xff0c;建立路径&#xff0c;视图函数大多为render, Ajax的创建 urls.py path(index/,views.index), path(index2/,views.index2), views.py def index(request):return render(request,01.html) def index2(requ…

【Netty专题】用Netty手写一个远程长连接通信框架

目录 前言阅读对象阅读导航前置知识课程内容一、使用Netty实现一个通信框架需要考虑什么问题二、通信框架功能设计2.1 功能描述2.2 通信模型2.3 消息体定义2.4 心跳机制2.5 重连机制*2.6 Handler的组织顺序2.7 交互式调试 三、代码实现&#xff1a;非必要。感兴趣的自行查看3.1…