python 之 矩阵相关操作

文章目录

  • 1. **创建矩阵**:
  • 2. **矩阵加法**:
  • 3. **矩阵乘法**:
  • 4. **矩阵转置**:
  • 5. **元素级操作**:
  • 6. **汇总统计**:
  • 7. **逻辑操作**:

在这里插入图片描述

理解你的需求,我将为每个功能写一个单独的代码块来演示不同的矩阵操作。以下是单独的示例代码,每个示例都包含一个不同的矩阵操作:

1. 创建矩阵

import numpy as np

# 创建矩阵
matrix = np.array([[1, 2, 3], [4, 5, 6]])
print("矩阵:")
print(matrix)

2. 矩阵加法

import numpy as np

matrix1 = np.array([[1, 2, 3], [4, 5, 6]])
matrix2 = np.array([[7, 8, 9], [10, 11, 12])

result_addition = matrix1 + matrix2
print("矩阵加法结果:")
print(result_addition)

3. 矩阵乘法

import numpy as np

matrix1 = np.array([[1, 2], [3, 4]])
matrix2 = np.array([[5, 6], [7, 8])

result_multiplication = np.dot(matrix1, matrix2)
print("矩阵乘法结果:")
print(result_multiplication)

4. 矩阵转置

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6])

transposed_matrix = matrix.T
print("矩阵转置:")
print(transposed_matrix)

5. 元素级操作

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6])

result_elementwise_add = matrix + 2
result_elementwise_multiply = matrix * 2

print("元素级加法结果:")
print(result_elementwise_add)
print("元素级乘法结果:")
print(result_elementwise_multiply)

6. 汇总统计

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6])

row_sum = np.sum(matrix, axis=1)
column_sum = np.sum(matrix, axis=0)

print("行的求和:")
print(row_sum)
print("列的求和:")
print(column_sum)

7. 逻辑操作

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6])

comparison_result = matrix > 3
selected_elements = matrix[matrix > 3]

print("逻辑操作结果:")
print(comparison_result)
print("布尔索引结果:")
print(selected_elements)

这些单独的示例代码演示了不同的矩阵操作,包括创建矩阵、矩阵加法、矩阵乘法、矩阵转置、元素级操作、汇总统计、逻辑操作等。你可以单独运行每个示例以查看其效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/103676.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ES在企业项目中的实战总结,彻底掌握ES的使用

通过之前两篇文章 了解了ES的核心概念和基础使用学习进阶的DSL语法处理复杂的查询 这段时间通过在本企业代码中对ES框架的使用,总结了不少经验。主要分为三点 企业封装了ES原生的api,需要使用企业项目提供的接口实现 -------简单使用(本章节目…

论文阅读[51]通过深度学习快速识别荧光组分

【论文基本信息】 标题:Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning 标题译名:通过深度学习快速识别 三维激发-发射矩阵荧光光谱中的荧光组分 期刊与年份&…

基于springboot的房产销售系统

基于springbootvue的房产销售系统 角色:用户、管理员、销售经理 管理员:首页、个人中心、用户管理、销售经理管理、房源信息管理、房源类型管理、房子户型管理、交易订单管理、预约看房管理、评价管理、我的收藏管理、系统管理等。 用户:首页、个人中心…

UI 自动化测试框架:PO模式+数据驱动

1. PO 设计模式简介 什么是 PO 模式? PO(PageObject)设计模式将某个页面的所有元素对象定位和对元素对象的操作封装成一个 Page 类,并以页面为单位来写测试用例,实现页面对象和测试用例的分离。 PO 模式的设计思想与…

利用Jpom在线构建Spring Boot项目

1 简介 前面介绍了运用Jpom构建部署Vue项目,最近研究了怎么部署Spring Boot项目,至此,一套简单的前后端项目就搞定了。 2 基本步骤 因为就是一个简单的自研测试项目,所以构建没有使用docker容器,直接用java -jar命令…

xcode15一直显示正在连接iOS17真机问题解决

前言 更新xcode15之后,出现了各种报错问题,可谓是一路打怪啊,解决一个报错问题又来一个。没想到到了最后还能出现一个一直显示正在连接iOS17真机的问题 一直显示正在连接iOS17真机的问题 问题截图如下: 解决方法 1. 打开De…

2018年亚太杯APMCM数学建模大赛B题人才与城市发展求解全过程文档及程序

2018年亚太杯APMCM数学建模大赛 B题 人才与城市发展 原题再现 招贤纳士是过去几年来许多城市的亮点之一。北京、上海、武汉、成都、西安、深圳,实际上都在用各种吸引人的政策来争夺人才。人才代表着城市创新发展的动力,因为他们能够在更短的时间内学习…

Kafka入门04——原理分析

目录 01理解Topic和Partition Topic(主题) Partition(分区) 02理解消息分发 消息发送到分区 消费者订阅和消费指定分区 总结 03再均衡(rebalance) 再均衡的触发 分区分配策略 RangeAssignor(范围分区) RoundRobinAssignor(轮询分区) StickyAssignor(粘性分区) Re…

【多线程】Java如何实现多线程?如何保证线程安全?如何自定义线程池?

个人简介:Java领域新星创作者;阿里云技术博主、星级博主、专家博主;正在Java学习的路上摸爬滚打,记录学习的过程~ 个人主页:.29.的博客 学习社区:进去逛一逛~ 多线程 Java多线程1. 进程与线程2. 多线程1&am…

脏牛提权 liunx

使用方法 Liunx 普通用户 内核版本 在版本里 我直接脏牛提权 有脚本查看内核版本 上传c脚本 编译 直接执行 获取高权限 提权 Liunx https://github.com/InteliSecureLabs/Linux Exploit Suggester 运行这个脚本 上传到客户端 https://github…

小插曲 -- 使用Visual Studio Code远程连接香橙派

在之前的学习中,代码的修改和保存都依赖于“vi”指令,而不得不承认vi指令的编辑界面非常原始,所以,如果可以将代码编辑放到更友好的环境里进行无疑是一件大快人心的事情。 本节介绍如何通过Visual Studio Code来进行远程连接: Vi…

二进制搭建 Kubernetes+部署网络组件+部署CornDNS+负载均衡部署+部署Dashboard

二进制搭建 Kubernetes v1.20 k8s集群master01:20.0.0.50 kube-apiserver kube-controller-manager kube-scheduler etcd k8s集群master02:20.0.0.100k8s集群node01:20.0.0.110 kubelet kube-proxy docker etcd k8s集群node02:20.…

SysTick—系统定时器

SysTick 简介 SysTick—系统定时器是属于CM3内核中的一个外设,内嵌在NVIC中。系统定时器是一个24bit 的向下递减的计数器,计数器每计数一次的时间为1/SYSCLK,一般我们设置系统时钟SYSCLK 等于72M。当重装载数值寄存器的值递减到0的时候&#…

研发效能(DevOps)职业技术认证-第六期开班啦丨IDCF

本证书是由国家工业和信息化部教育与考试中心颁发的职业技术证书,也是国内首个《研发效能(DevOps)工程师职业技术认证》。该《认证》对研发效能(DevOps)工程师的职业技术分为初级、中级、高级三个专业等级。 IDCF社区…

商场巨变!拓世法宝AI智能商业一体机引爆智慧购物新浪潮

在如今信息爆炸的时代,大型商场的规模与复杂程度也呈现出愈发庞大的趋势。它的背后不仅是商场规模的扩大,更是商业模式的转型升级。消费者对于购物体验和服务质量的要求也日益提高。传统商场单一提供商品销售的职能已无法满足消费者多元化的需求&#xf…

wf-docker集群搭建(未完结)

系列文章目录 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、redis集群二、mysql集群三、nacos集群1. 环境要求2. 拉取镜像2.1. 拉取镜像方式配置集群2.2. 自定义nacos镜像配置集群 3 自定义…

基于windows10的pytorch环境部署及yolov8的安装及测试

第一章 pytorch环境部署留念 第一步:下载安装anaconda 官网地址 (也可以到清华大学开源软件镜像站下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/) 我安装的是下面这个,一通下一步就完事儿。 第二步…

EtherCAT从站转CclinkIE协议网关应用案例

远创智控的YC-ECT-CCLKIE网关,一款具有强大功能的ETHERCAT通讯网关。 它可以将ETHERCAT网络和CCLINK IE FIELD BASIC网络无缝连接起来。作为ETHERCAT总线中的从站,本网关可以接收来自ETHERCAT主站的数据,并将其传输到CCLINK IE FIELD BASIC网…

高效MMdetection(3.1.0)环境安装和训练自己数据集教程(实现于Linux(ubuntu),可在windows尝试)

一、前言 很久没用mmdetection了,作为目标检测常见的几个深度学习框架,mmdetection用的人还是很多的,其中比较吸引人的一点就是mmdetection集成了非常多的算法,对于想做实验对比和算法学习的人来说,基于这个框架可以事…

cola架构:cola源码中访问者模式应用浅析

目录 1.访问者模式简介 2.cola访问者模式应用 2.1 cola被访问者类图 2.2 cola访问者类图 我们知道,如果一个对象结构包含很多类型的对象,希望对这些对象实施一些依赖其具体类型的操作,但又避免让这些操作“污染”这些对象的类&#xff0c…