雪花算法(SnowFlake)

简介

现在的服务基本是分布式、微服务形式的,而且大数据量也导致分库分表的产生,对于水平分表就需要保证表中 id 的全局唯一性。

对于 MySQL 而言,一个表中的主键 id 一般使用自增的方式,但是如果进行水平分表之后,多个表中会生成重复的 id 值。那么如何保证水平分表后的多张表中的 id 是全局唯一性的呢?

如果还是借助数据库主键自增的形式,那么可以让不同表初始化一个不同的初始值,然后按指定的步长进行自增。例如有3张拆分表,初始主键值为1,2,3,自增步长为3。

当然也有人使用 UUID 来作为主键,但是 UUID 生成的是一个无序的字符串,对于 MySQL 推荐使用增长的数值类型值作为主键来说不适合。

也可以使用 Redis 的自增原子性来生成唯一 id,但是这种方式业内比较少用。

当然还有其他解决方案,不同互联网公司也有自己内部的实现方案。雪花算法是其中一个用于解决分布式 id 的高效方案,也是许多互联网公司在推荐使用的。

SnowFlake 雪花算法

SnowFlake 中文意思为雪花,故称为雪花算法。最早是 Twitter 公司在其内部用于分布式环境下生成唯一 ID。在2014年开源 scala 语言版本。

雪花算法的原理就是生成一个的 64 位比特位的 long 类型的唯一 id。

  • 最高 1 位固定值 0,因为生成的 id 是正整数,如果是 1 就是负数了。

  • 接下来 41 位存储毫秒级时间戳,2^41/(1000*60*60*24*365)=69,大概可以使用 69 年。

  • 再接下 10 位存储机器码,包括 5 位 datacenterId 和 5 位 workerId。最多可以部署 2^10=1024 台机器。

  • 最后 12 位存储序列号。同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一 id 的系统,请求雪花算法服务获取 id 即可。

对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。

算法实现

package com.ruoyi.common.utils;

import java.util.Date;

/**
 * @ClassName: SnowFlakeUtil
 * 雪花算法
 */
public class SnowFlakeUtil {

    private static SnowFlakeUtil snowFlakeUtil;
    static {
        snowFlakeUtil = new SnowFlakeUtil();
    }

    // 初始时间戳(纪年),可用雪花算法服务上线时间戳的值
    // 1650789964886:2022-04-24 16:45:59
    private static final long INIT_EPOCH = 1650789964886L;

    // 时间位取&
    private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;

    // 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断
    private long lastTimeMillis = -1L;

    // dataCenterId占用的位数
    private static final long DATA_CENTER_ID_BITS = 5L;

    // dataCenterId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);

    // dataCenterId
    private long dataCenterId;

    // workId占用的位数
    private static final long WORKER_ID_BITS = 5L;

    // workId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    // workId
    private long workerId;

    // 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095
    private static final long SEQUENCE_BITS = 12L;

    // 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095
    // 0000000000000000000000000000000000000000000000000000111111111111
    private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);

    // 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095
    private long sequence;

    // workId位需要左移的位数 12
    private static final long WORK_ID_SHIFT = SEQUENCE_BITS;

    // dataCenterId位需要左移的位数 12+5
    private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;

    // 时间戳需要左移的位数 12+5+5
    private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;

    /**
     * 无参构造
     */
    public SnowFlakeUtil() {
        //实际分布式系统中,一种参考方案是dataCenterId为mac地址,workerId为pid相关
        this(1, 1);
    }

    /**
     * 有参构造
     * @param dataCenterId
     * @param workerId
     */
    public SnowFlakeUtil(long dataCenterId, long workerId) {
        // 检查dataCenterId的合法值
        if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {
            throw new IllegalArgumentException(
                    String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));
        }
        // 检查workId的合法值
        if (workerId < 0 || workerId > MAX_WORKER_ID) {
            throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }

    /**
     * 获取唯一ID
     * @return
     */
    public static Long getSnowFlakeId() {
        return snowFlakeUtil.nextId();
    }

    /**
     * 通过雪花算法生成下一个id,注意这里使用synchronized同步
     * @return 唯一id
     */
    public synchronized long nextId() {
        long currentTimeMillis = System.currentTimeMillis();
        System.out.println(currentTimeMillis);
        // 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题
        if (currentTimeMillis < lastTimeMillis) {
            throw new RuntimeException(
                    String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,
                            lastTimeMillis));
        }
        if (currentTimeMillis == lastTimeMillis) {
            // 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095
            // 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095
            // 那么就使用新的时间戳
            sequence = (sequence + 1) & SEQUENCE_MASK;
            if (sequence == 0) {
                currentTimeMillis = getNextMillis(lastTimeMillis);
            }
        } else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095
            sequence = 0;
        }
        // 记录最后一次使用的毫秒时间戳
        lastTimeMillis = currentTimeMillis;
        // 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行
        // <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍
        // |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1
        // 优先级:<< > |
        return
                // 时间戳部分
                ((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)
                        // 数据中心部分
                        | (dataCenterId << DATA_CENTER_ID_SHIFT)
                        // 机器表示部分
                        | (workerId << WORK_ID_SHIFT)
                        // 序列号部分
                        | sequence;
    }

    /**
     * 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒
     * @param lastTimeMillis 指定毫秒时间戳
     * @return 时间戳
     */
    private long getNextMillis(long lastTimeMillis) {
        long currentTimeMillis = System.currentTimeMillis();
        while (currentTimeMillis <= lastTimeMillis) {
            currentTimeMillis = System.currentTimeMillis();
        }
        return currentTimeMillis;
    }

    /**
     * 获取随机字符串,length=13
     * @return
     */
    public static String getRandomStr() {
        return Long.toString(getSnowFlakeId(), Character.MAX_RADIX);
    }

    /**
     * 从ID中获取时间
     * @param id 由此类生成的ID
     * @return
     */
    public static Date getTimeBySnowFlakeId(long id) {
        return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);
    }

    public static void main(String[] args) {
        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();
        long id = snowFlakeUtil.nextId();
        System.out.println("id:" + id);
        Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);
        System.out.println(date);
        long time = date.getTime();
        System.out.println("time:" + time);
        System.out.println(getRandomStr());

    }

}

算法优缺点

  • 雪花算法有以下几个优点:

  • 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。

  • 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。

  • 不依赖第三方库或者中间件。

  • 算法简单,在内存中进行,效率高。

雪花算法有如下缺点:

  • 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。

注意事项

其实雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到 69 年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024 台,那么可将减少的位数补充给机器码用。

注意,雪花算法中 41 位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。

对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/103.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【python实操】用python写软件弹窗

文章目录前言组件label 与 多行文本复选框组件Radiobutton单选组件Frame框架组件labelframe标签框架列表框Listboxscrollbar滚动条组件scale刻度条组件spinbox组件Toplevel子窗体组件PanedWindow组件Menu下拉菜单弹出菜单总结针对组件前言 python学习之路任重而道远&#xff0…

chatgpt这么火?前端如何实现类似chatgpt的对话页面

&#x1f4cb; 个人简介 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是阿牛&#xff0c;全栈领域优质创作者&#x1f61c;&#x1f4dd; 个人主页&#xff1a;馆主阿牛&#x1f525;&#x1f389; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;…

代码看不懂?ChatGPT 帮你解释,详细到爆!

偷个懒&#xff0c;用ChatGPT 帮我写段生物信息代码如果 ChatGPT 给出的的代码不太完善&#xff0c;如何请他一步步改好&#xff1f;网上看到一段代码&#xff0c;不知道是什么含义&#xff1f;输入 ChatGPT 帮我们解释下。生信宝典 1: 下面是一段 Linux 代码&#xff0c;请帮…

Linux命令之nano命令

一、nano命令简介 nano是一个小型、免费、友好的编辑器&#xff0c;旨在取代非免费Pine包中的默认编辑器Pico。nano不仅复制了Pico的外观&#xff0c;还实现了Pico中一些缺失&#xff08;或默认禁用&#xff09;的功能&#xff0c;例如“搜索和替换”和“转到行号和列号”。nan…

【面试题】如何避免使用过多的 if else?

大厂面试题分享 面试题库前后端面试题库 &#xff08;面试必备&#xff09; 推荐&#xff1a;★★★★★地址&#xff1a;前端面试题库一、引言相信大家听说过回调地狱——回调函数层层嵌套&#xff0c;极大降低代码可读性。其实&#xff0c;if-else层层嵌套&#xff0c;如下图…

iOS-砸壳篇(两种砸壳方式)

CrackerXI砸壳呢&#xff0c;当时你要是使用 frida-ios-dump 也是可以的&#xff1b; https://github.com/AloneMonkey/frida-ios-dump frida-ios-dump: 代码中需要更改的&#xff1a;手机中的内网ip 密码 等 最后放到我的砸壳路径里&#xff1a; python dump.py -l查看应用…

【答疑现场】我一个搞嵌入式的,有必要学习Python吗?

【答疑现场】我一个搞嵌入式的&#xff0c;有必要学习Python吗&#xff1f; 文章目录1 写在前面2 一个结论3 Python在嵌入式领域能干啥事4 Python是用来干大事的5 友情推荐6 福利活动大家好&#xff0c;我是架构师李肯&#xff0c;一个专注于嵌入式物联网系统架构设计的攻城狮。…

【蓝桥杯嵌入式】ADC模数转换的原理图解析与代码实现(以第十一届省赛为例)——STM32G4

&#x1f38a;【蓝桥杯嵌入式】专题正在持续更新中&#xff0c;原理图解析✨&#xff0c;各模块分析✨以及历年真题讲解✨都在这儿哦&#xff0c;欢迎大家前往订阅本专题&#xff0c;获取更多详细信息哦&#x1f38f;&#x1f38f;&#x1f38f; &#x1fa94;本系列专栏 - 蓝…

Linux--多线程(1)

目录 一、概念 二、理解 三、创建、退出、合并进程 //man pthread_create //Compile and link with -pthread. //1.为什么没有fun函数&#xff1f; //2.加上sleep来改进 //3.线程结束会不会影响主线程运行&#xff1f; //4.那如果主线程比较少呢&#xff1f; 四、如何…

IP协议+以太网协议

在计算机网络体系结构的五层协议中&#xff0c;第三层就是负责建立网络连接&#xff0c;同时为上层提供服务的一层&#xff0c;网络层协议主要负责两件事&#xff1a;即地址管理和路由选择&#xff0c;下面就网络层的重点协议做简单介绍~~ IP协议 网际协议IP是TCP/IP体系中两…

RecyclerView流程学习

RecyclerView流程学习模块划分绘制流程onMeasuremLayout为nullmLayout开启自动测量未开启自动测量onLayoutonDrawonLayoutChildren缓存预加载滚动和fling模块划分 RecyclerView中根据其功能可以分为以下几个模块&#xff1a; Recycler mRecycler // 缓存管理者&#xff0c;fi…

yolov5的基本配置

yolov5的基本配置train.pydata.yaml数据集标签文件格式:总结train.py def parse_opt(knownFalse):parser argparse.ArgumentParser()parser.add_argument(--weights, typestr, defaultROOT / yolov5s.pt, helpinitial weights path)parser.add_argument(--cfg, typestr, defau…

uniCloud在线升级APP配置教程

app在线升级背景实现思路流程流程背景 因用户需要添加手机h5页面来进数据操作实现思路流程 实现流程图流程 相关文档&#xff1a;帮助文档 https://uniapp.dcloud.net.cn/uniCloud/cf-functions.html 注册服务空间 https://unicloud.dcloud.net.cn/pages/login/login uni升级…

基于Yolv5s的口罩检测

1.Yolov5算法原理和网络结构 YOLOv5按照网络深度和网络宽度的大小&#xff0c;可以分为YO-LOv5s、YOLOv5m、YOLOv5l、YOLOv5x。本文使用YOLOv5s&#xff0c;它的网络结构最为小巧&#xff0c;同时图像推理速度最快达0.007s。YO-LOv5的网络结构主要由四部分组成&#xff0c;分别…

三天吃透MySQL八股文(2023最新整理)

本文已经收录到Github仓库&#xff0c;该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点&#xff0c;欢迎star~ Github地址&#xff1a;https://github.com/…

博客系统(界面设计)

✏️作者&#xff1a;银河罐头 &#x1f4cb;系列专栏&#xff1a;JavaEE &#x1f332;“种一棵树最好的时间是十年前&#xff0c;其次是现在” 目录实现博客列表页预期效果导航栏页面主体左右布局左侧区域右侧区域完整代码实现博客详情页预期效果导航栏 左侧右侧完整代码实现…

全国程序员薪酬大曝光!看完我酸了····

2023年&#xff0c;随着互联网产业的蓬勃发展&#xff0c;程序员作为一个自带“高薪多金”标签的热门群体&#xff0c;被越来越多的人所关注。在过去充满未知的一年中&#xff0c;他们的职场现状发生了一定的改变。那么&#xff0c;程序员岗位的整体薪资水平、婚恋现状、职业方…

认识TomcatMavenServlet第一个Servlet程序

文章目录一、什么是Tomcat、什么是Servlet二、Tomcat的下载与使用关于下载启动欢迎页面查看可能出现的问题博客系统静态页面的部署三、什么是Maven四、第一个servlet程序1.创建Maven项目2.引入依赖3.创建目录结构4.编写程序5.打包程序6.部署程序7.验证小结五、servlet程序简化版…

学习 Python 之 Pygame 开发魂斗罗(四)

学习 Python 之 Pygame 开发魂斗罗&#xff08;四&#xff09;继续编写魂斗罗1. 创建子弹类2. 根据玩家方向和状态设置子弹发射的位置(1). 站立向右发射子弹(2). 站立向左发射子弹(3). 站立朝上发射子弹(4). 蹲下发射子弹(5). 向斜方发射子弹(6). 奔跑时发射子弹(7). 跳跃时发射…

图片的美白与美化

博主简介 博主是一名大二学生&#xff0c;主攻人工智能研究。感谢让我们在CSDN相遇&#xff0c;博主致力于在这里分享关于人工智能&#xff0c;c&#xff0c;Python&#xff0c;爬虫等方面知识的分享。 如果有需要的小伙伴可以关注博主&#xff0c;博主会继续更新的&#xff0c…