redis持久化的几种方式

8465b3c62fe74f729367a2b1df1ed5a4.jpg一、简介

 

Redis是一种高级key-value数据库。它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富。有字符串,链表,集 合和有序集合。支持在服务器端计算集合的并,交和补集(difference)等,还支持多种排序功能。所以Redis也可以被看成是一个数据结构服务 器。

Redis的所有数据都是保存在内存中,然后不定期的通过异步方式保存到磁盘上(这称为“半持久化模式”);也可以把每一次数据变化都写入到一个append only file(aof)里面(这称为“全持久化模式”)。 

 

由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数据保存到磁 盘上,当redis重启后,可以从磁盘中恢复数据。redis提供两种方式进行持久化,一种是RDB持久化(原理是将Reids在内存中的数据库记录定时 dump到磁盘上的RDB持久化),另外一种是AOF(append only file)持久化(原理是将Reids的操作日志以追加的方式写入文件)。那么这两种持久化方式有什么区别呢,改如何选择呢?网上看了大多数都是介绍这两 种方式怎么配置,怎么使用,就是没有介绍二者的区别,在什么应用场景下使用。

 

Redis 提供了多种不同级别的持久化方式:

 

1 RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot)。

2 AOF 持久化记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集。 AOF 文件中的命令全部以 Redis 协议的格式来保存,新命令会被追加到文件的末尾。 Redis 还可以在后台对 AOF 文件进行重写(rewrite),使得 AOF 文件的体积不会超出保存数据集状态所需的实际大小。

3 Redis 还可以同时使用 AOF 持久化和 RDB 持久化。 在这种情况下, 当 Redis 重启时, 它会优先使用 AOF 文件来还原数据集, 因为 AOF 文件保存的数据集通常比 RDB 文件所保存的数据集更完整。

4 你甚至可以关闭持久化功能,让数据只在服务器运行时存在

 

 

二、区别

    

 

      RDB持久化是指在指定的时间间隔内将内存中的数据集快照写入磁盘,实际操作过程是fork一个子进程,先将数据集写入临时文件,写入成功后,再替换之前的文件,用二进制压缩存储。

 

         

 

 

 

          AOF持久化以日志的形式记录服务器所处理的每一个写、删除操作,查询操作不会记录,以文本的方式记录,可以打开文件看到详细的操作记录。

 

          

 

三、二者优缺点

RDB存在哪些优势呢?

复制代码

1). 一旦采用该方式,那么你的整个Redis数据库将只包含一个文件,这对于文件备份而言是非常完美的。比如,你可能打算每个小时归档一次最近24小时的数 据,同时还要每天归档一次最近30天的数据。通过这样的备份策略,一旦系统出现灾难性故障,我们可以非常容易的进行恢复。

 

2). 对于灾难恢复而言,RDB是非常不错的选择。因为我们可以非常轻松的将一个单独的文件压缩后再转移到其它存储介质上。

 

3). 性能最大化。对于Redis的服务进程而言,在开始持久化时,它唯一需要做的只是fork出子进程,之后再由子进程完成这些持久化的工作,这样就可以极大的避免服务进程执行IO操作了。

 

4). 相比于AOF机制,如果数据集很大,RDB的启动效率会更高。

复制代码

RDB又存在哪些劣势呢?

1). 如果你想保证数据的高可用性,即最大限度的避免数据丢失,那么RDB将不是一个很好的选择。因为系统一旦在定时持久化之前出现宕机现象,此前没有来得及写入磁盘的数据都将丢失。

 

2). 由于RDB是通过fork子进程来协助完成数据持久化工作的,因此,如果当数据集较大时,可能会导致整个服务器停止服务几百毫秒,甚至是1秒钟。

AOF的优势有哪些呢?

复制代码

1). 该机制可以带来更高的数据安全性,即数据持久性。Redis中提供了3中同步策略,即每秒同步、每修改同步和不同步。事实上,每秒同步也是异步完成的,其 效率也是非常高的,所差的是一旦系统出现宕机现象,那么这一秒钟之内修改的数据将会丢失。而每修改同步,我们可以将其视为同步持久化,即每次发生的数据变 化都会被立即记录到磁盘中。可以预见,这种方式在效率上是最低的。至于无同步,无需多言,我想大家都能正确的理解它。

 

2). 由于该机制对日志文件的写入操作采用的是append模式,因此在写入过程中即使出现宕机现象,也不会破坏日志文件中已经存在的内容。然而如果我们本次操 作只是写入了一半数据就出现了系统崩溃问题,不用担心,在Redis下一次启动之前,我们可以通过redis-check-aof工具来帮助我们解决数据 一致性的问题。

 

3). 如果日志过大,Redis可以自动启用rewrite机制。即Redis以append模式不断的将修改数据写入到老的磁盘文件中,同时Redis还会创 建一个新的文件用于记录此期间有哪些修改命令被执行。因此在进行rewrite切换时可以更好的保证数据安全性。

 

4). AOF包含一个格式清晰、易于理解的日志文件用于记录所有的修改操作。事实上,我们也可以通过该文件完成数据的重建。

复制代码

AOF的劣势有哪些呢?

1). 对于相同数量的数据集而言,AOF文件通常要大于RDB文件。RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。

 

2). 根据同步策略的不同,AOF在运行效率上往往会慢于RDB。总之,每秒同步策略的效率是比较高的,同步禁用策略的效率和RDB一样高效。

 

 

二者选择的标准,就是看系统是愿意牺牲一些性能,换取更高的缓存一致性(aof),还是愿意写操作频繁的时候,不启用备份来换取更高的性能,待手动运行save的时候,再做备份(rdb)。rdb这个就更有些 eventually consistent的意思了。

 

         

 

 四、配置

    RDB方式

      Redis通过创建快照的方式获取某一时刻Redis中所有数据的副本。用户可以针对该快照进行各种操作,比如:将快照复制到其他服务器从而完成Redis的主从复制,或者将快照留在原地,服务器重启的时候重用数据。 

 

      根据配置文件,可以手动设置Redis快照名及路径:

 

1 # RDB文件名

2 dbfilename "dump.rdb"

3# RDB文件和AOF文件路径

4dir "/usr/local/var/db/redis"

Redis创建快照主要有以下几种方式: 

 

  (1)客户端直接通过命令BGSAVE或者SAVE来创建一个快照

 

1 - BGSAVE是通过redis调用fork来创建一个子进程,然后子进程负责将快照写入磁盘,而父进程仍然继续处理命令。

 

2 - SAVE是在没有足够的内存空间去执行BGSAVE或者无所谓等待的时候。执行SAVE命令过程中,redis不在响应任何其他命令。

  (2)在redis.conf中设置save配置选项(应用开发中比较常用)

 

 1 # 当在规定的时间内,Redis发生了写操作的个数满足条件,会触发发生BGSAVE命令。

 2 # save <seconds> <changes>

 3 # 当用户设置了多个save的选项配置,只要其中任一条满足,Redis都会触发一次BGSAVE操作,比如:900秒之内至少一次写操作、300秒之内至少发生10次写操作、60秒之内发生至少10000次写操作都会触发发生快照操作

 4 save 900 1

 5 save 300 10

 6 save 60 10000

 

 

  (3)当Redis通过shutdown命令关闭服务器请求时,会执行SAVE命令创建一个快照,如果使用kill -9 PID将不会创建快照。

 

  注意:

 

1 在只使用快照持久化来报错数据时,如果系统崩溃或者强杀,用户将会丢失最近一次生成快照之后更改的所有数据。因此如果应用程序对于两次快照间丢失的数据可接受,利用快照就是一个很好的方式,但是往往一些系统对于丢失几分钟的数据都不可接受,比如高频的电子商务系统。

 

2 此外,如果Redis存储的数据量长达数十G的时候,没执行一次快照需要花费大量时间,严重影响到服务器的性能。

 AOF方式

  在执行写命令时,AOF持久化会将执行的写命令也写到AOF文件的末尾,以此来记录数据的变化。换句话说,将AOF文件中包含的内容重新执行一遍,就可以回复AOF文件所记录的数据集。

在Redis.conf配置中设置如下:

 

复制代码

 1 # redis默认关闭AOF机制,可以将no改成yes实现AOF持久化

 2 appendonly no

 3 # AOF文件

 4 appendfilename "appendonly.aof"

 5 # AOF持久化同步频率,always表示每个Redis写命令都要同步fsync写入到磁盘中,但是这种方式会严重降低redis的速度;everysec表示每秒执行一次同步fsync,显示的将多个写命令同步到磁盘中;no表示让操作系统来决定应该何时进行同步fsync,Linux系统往往可能30秒才会执行一次

 6 # appendfsync always

 7 appendfsync everysec

 8 # appendfsync no

 9 

10 # 在日志进行BGREWRITEAOF时,如果设置为yes表示新写操作不进行同步fsync,只是暂存在缓冲区里,避免造成磁盘IO操作冲突,等重写完成后在写入。redis中默认为no 

11 no-appendfsync-on-rewrite no 

12 # 当前AOF文件大小是上次日志重写时的AOF文件大小两倍时,发生BGREWRITEAOF操作。 

13 auto-aof-rewrite-percentage 100 

14 #当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF。 

15 auto-aof-rewrite-min-size 64mb 

16 # Redis再恢复时,忽略最后一条可能存在问题的指令(因为最后一条指令可能存在问题,比如写一半时突然断电了)

17 aof-load-truncated yes

18 #Redis4.0新增RDB-AOF混合持久化格式,在开启了这个功能之后,AOF重写产生的文件将同时包含RDB格式的内容和AOF格式的内容,其中RDB格式的内容用于记录已有的数据,而AOF格式的内存则用于记录最近发生了变化的数据,这样Redis就可以同时兼有RDB持久化和AOF持久化的优点(既能够快速地生成重写文件,也能够在出现问题时,快速地载入数据)。

19 aof-use-rdb-preamble no

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/1026.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【蓝桥杯专题】 贪心(C++ | 洛谷 | acwing | 蓝桥)

菜狗现在才开始备战蓝桥杯QAQ 文章目录【蓝桥杯专题】 &#xff08;C | 洛谷 | acwing | 蓝桥&#xff09;1055. 股票买卖 IIAcWing 104. 货仓选址传递糖果AcWing 112. 雷达设备付账问题乘积最大AcWing 1247. 后缀表达式P【蓝桥杯专题】 &#xff08;C | 洛谷 | acwing | 蓝桥&…

Flink 应用案例——求网页访问量Top N 实时计算(附可执行代码)

在学习了Flink之后&#xff0c;笔者通过以下案例对Flink API 进行简单复习 目录 案例要求 前置准备 编写主程序&#xff08;点此跳转至代码&#xff09; 运行截图 案例要求 以下数据 为某网站的访问日志 现要求通过以下数据 统计出最近10s内最热门的N个页面&#xff08;即…

【3.17】MySQL索引整理、回溯(分割、子集问题)

3.1 索引常见面试题 索引的分类 什么是索引&#xff1f; 索引是一种数据结构&#xff0c;可以帮助MySQL快速定位到表中的数据。使用索引&#xff0c;可以大大提高查询的性能。 按「数据结构」分类&#xff1a;Btree索引、Hash索引、Full-text索引。 InnoDB 存储引擎创建的聚簇…

漫画:什么是快速排序算法?

这篇文章&#xff0c;以对话的方式&#xff0c;详细着讲解了快速排序以及排序排序的一些优化。 一禅&#xff1a;归并排序是一种基于分治思想的排序&#xff0c;处理的时候可以采取递归的方式来处理子问题。我弄个例子吧&#xff0c;好理解点。例如对于这个数组arr[] { 4&…

优思学院|六西格玛DMAIC,傻傻搞不清?

DMAIC还是搞不清&#xff1f; DMAIC是一个用于过程改进和六西格玛的问题解决方法论。它是以下五个步骤的缩写&#xff1a; 定义&#xff08;Define&#xff09;&#xff1a;明确问题&#xff0c;设定项目的目标和目的。绘制流程图&#xff0c;并收集数据&#xff0c;以建立未来…

基于bearpi的智能小车--Qt上位机设计

基于bearpi的智能小车--Qt上位机设计 前言一、界面原型1.主界面2.网络配置子窗口模块二、设计步骤1.界面原型设计2.控件添加信号槽3.源码解析3.1.网络链接核心代码3.2.网络设置子界面3.3.小车控制核心代码总结前言 最近入手了两块小熊派开发板,借智能小车案例,进行鸿蒙设备学…

01背包问题c++

问题 问题介绍 有 N 种物品和一个容量是 V 的背包&#xff0c;每种物品都有无限件可用。 第 i 种物品的体积是 vi&#xff0c;价值是 wi。 求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。 输出最大价值。 输入格式 第…

基于Transformer的交通预测模型部分汇总【附源代码】

交通预测一直是一个重要的问题&#xff0c;它涉及到交通运输系统的可靠性和效率。随着人工智能的发展&#xff0c;越来越多的研究者开始使用深度学习模型来解决这个问题。其中&#xff0c;基于Transformer的交通预测模型在近年来备受关注&#xff0c;因为它们具有优秀的建模能力…

设计模式之桥接模式(C++)

作者&#xff1a;翟天保Steven 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 一、桥接模式是什么&#xff1f; 桥接模式是一种结构型的软件设计模式&#xff0c;将抽象部分与实现部分分离&#xff0c;使他们可…

像ChatGPT玩转Excel数据

1.引言 最近ChatGPT的出现&#xff0c;把人工智能又带起了一波浪潮。机器人能否替代人类又成了最近热门的话题。 今天我们推荐的一个玩法和ChatGPT有点不一样。我们的课题是“让用户可以使用自然语言从Excel查询到自己想要的数据”。 要让自然语言可以从Excel中查数据&#…

通过百度文心一言大模型作画尝鲜,感受国产ChatGPT的“狂飙”

3月16日下午&#xff0c;百度于北京总部召开新闻发布会&#xff0c;主题围绕新一代大语言模型、生成式AI产品文心一言。百度创始人、董事长兼首席执行官李彦宏&#xff0c;百度首席技术官王海峰出席&#xff0c;并展示了文心一言在文学创作、商业文案创作、数理推算、中文理解、…

用Qt画一个温度计

示例1 以下是用Qt绘制一个简单的温度计的示例代码&#xff1a; #include <QPainter> #include <QWidget> #include <QApplication> class Thermometer : public QWidget { public:Thermometer(QWidget *parent 0); protected:void paintEvent(QPaintEvent …

【Hive】配置

目录 Hive参数配置方式 参数的配置方式 1. 文件配置 2. 命令行参数配置 3. 参数声明配置 配置源数据库 配置元数据到MySQL 查看MySQL中的元数据 Hive服务部署 hiveserver2服务 介绍 部署 启动 远程连接 1. 使用命令行客户端beeline进行远程访问 metastore服务 …

LC-146.LRU 缓存

题解&#xff1a;https://leetcode.cn/problems/lru-cache/solution/lru-ce-lue-xiang-jie-he-shi-xian-by-labuladong/ 文章目录[146. LRU 缓存](https://leetcode.cn/problems/lru-cache/)思路从0开始实现使用LinkedHashMap实现拓展&#xff1a;[460. LFU 缓存](https://leet…

【2024考研】计算机考研,4轮复习时间安排

文章目录&#x1f3a8;第1轮复习&#xff08;暑假前&系统课&#xff09;英语1/2数学1/2专业课408&#x1f3a8;第2轮复习&#xff08;开学前&真题&#xff09;英语1/2试卷数学1/2试卷专业课408试卷&#x1f3a8;第3轮复习&#xff08;报名前&政治&#xff09;政治试…

什么是数据治理,如何保障数据质量?_光点科技

随着信息化和数据化的发展&#xff0c;数据已经成为企业最为重要的资产之一。数据治理作为一种管理和保障数据质量的方法&#xff0c;越来越受到企业的重视。什么是数据治理&#xff1f;数据治理是一种管理和保障数据质量的方法。数据治理的主要目的是确保数据的可靠性、准确性…

Android APP隐私合规检测工具Camille使用

目录一、简介二、环境准备常用使用方法一、简介 现如今APP隐私合规十分重要&#xff0c;各监管部门不断开展APP专项治理工作及核查通报&#xff0c;不合规的APP通知整改或直接下架。camille可以hook住Android敏感接口&#xff0c;检测是否第三方SDK调用。根据隐私合规的场景&a…

二、数据结构-线性表

目录 &#x1f33b;&#x1f33b;一、线性表概述1.1 线性表的基本概念1.2 线性表的顺序存储1.2.1 线性表的基本运算在顺序表上的实现1.2.2 顺序表实现算法的分析1.2.3 单链表类型的定义1.2.4 线性表的基本运算在单链表上的实现1.3 其他运算在单链表上的实现1.3.1 建表1.3.2 删除…

Adam优化器算法详解及代码实现

文章目录学习率调整与梯度估计修正RMSprop 算法动量法Adam学习率调整与梯度估计修正 在介绍Adam算法之前&#xff0c;先谈谈Adam中两个关键的算法&#xff1a;学习率调整&#xff08;RMSprop 算法&#xff09;与梯度估计修正。 RMSprop 算法 学习率是神经网络优化时的重要超…

计算机组成原理(3)-哈工大

概述存储器分类按存储介质分类第一个是易失的&#xff0c;后面三个是非易失的按存取方式分类按在计算机中的作用分类RAM可读可写 ROM只读存储器的层次结构存储器的三个主要特性的关系缓存-主存层次和主存-辅存层次时间局部性就是cpu访问了一个数据&#xff0c;在不久的将来可能…