大语言模型之七- Llama-2单GPU微调SFT

(T4 16G)模型预训练colab脚本在github主页面。详见Finetuning_LLama_2_0_on_Colab_with_1_GPU.ipynb

在上一篇博客提到两种改进预训练模型性能的方法Retrieval-Augmented Generation (RAG) 或者 finetuning。本篇博客过一下模型微调。

微调:这是采用预训练的LLM并在较小的特定数据集上进一步训练它以适应特定任务或提高其性能的过程。通过微调,我们根据我们的数据调整模型的权重,使其更适合我们应用程序的独特需求。

从Hugging face的开源大模型排行榜open_llm_leaderboard可以看到Llama 2是一个高性能base model,并且其授权许可宽松,可用于商业用途的大语言模型,因而本篇以Llma-2的模型微调为例。

Llama-2 预训练

从零开始训练一个类似LlaMA 2的预训练模型需要庞大的数据和算力,预计的所有花费在一亿美金左右,这是很多公司和个人不具备这一经济条件,因而更容易些的做法是在开源预训练模型的基础上进行微调,这大大降低了数据集和算力的需求,作为个人也是可以实现的。

模型预训练colab脚本在github主页面。详见Finetuning_LLama_2_0_on_Colab_with_1_GPU.ipynb

模型量化

为了模型推理速度更快,对模型进行量化是个不错的选择,而在微调的过程中感知量化微调可以提升量化模型的性能,本小节先介绍模型的量化,下一小节介绍LlaMA-2的感知量化。

内存和磁盘需求

由于磁盘上的模型是完全加载到内存中再运行的,因而内存所需的空间和磁盘空间大小事一样的。

Model模型原始大小4比特量化大小
7B13GB3.9GB
13B24GB7.8GB
30B60GB19.5GB
65B120GB38.5GB

模型量化借助于github 上Llama2.cpp工程。可以实现模型的量化和高效的推理,llama2.cpp官方特性介绍如下:

  • Plain C/C++ implementation without dependencies
  • Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2 and AVX512 support for x86 architectures
  • Mixed F16 / F32 precision
  • 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
  • CUDA, Metal and OpenCL GPU backend support

量化的方法

量化的方法比较多,命名方法遵循”q” +量化比特位+变种,如下基于Huggingface上TheBloke模型库列出了可行的量化方法和他们的使用例子。

  • q2_k:用Q4_k对attention.wv和feed_forward.w2量化,其他用Q2_K量化;
  • q3_k_l:用Q5_k对attention.wv、attention.wo和feed_forward.w2量化,其他用Q2_K量化;
  • q3_k_m:用Q4_k对attention.wv、attention.wo和feed_forward.w2量化,其他用Q2_K量化;
  • q3_k_s:用用Q3_K量化所有张量;
  • q4_0:原始4比特方法量化;
  • q4_l:准确度介于q4_0和q5_0之间,但是推理速度比q5模型快;
  • q4_k_m:使用Q6_K对attention.wv和feed_forward.w2张量的前一半量化,其他使用Q4_K量化
  • q4_k_s:使用Q4_K量化所有张量
  • q5_0:更高准确性,更高资源占用率,更慢的推理速度;
  • q5_1:相比q5_0,可能有更高准确性,更高资源占用率以及更慢的推理速度;
  • q5_k_m:使用Q6_K对attention.wv和feed_forward.w2张量的前一半量化,其他使用Q5_K量化
  • q5_k_s:使用Q5_K量化所有张量
  • q6_k_s:使用Q8_K量化所有张量
  • q8_0:几乎和半精度浮点float16一样,资源占用率和速度都很慢,对大多数用户是不推荐的;
    上述的wv、wo的意义如下,关于Llama-2模型的推导,可以大语言模型之四-LlaMA-2从模型到应用
    在这里插入图片描述
    从众多的经验上看,Q5_K_M是模型表现和资源占用平衡不错的模型,如果可以进一步牺牲性能以减少资源的消耗可以考虑Q4_K_M。总的来说K_M版本的量化比K_S版本的性能要好一些。Q2_K和Q3_*的量化版本由于牺牲的性能比较多,所以一半并不推荐。
ModelMeasureF16Q4_0Q4_1Q5_0Q5_1Q8_0
7Bperplexity5.90666.15656.09125.98625.94815.9070
7Bfile size13.0G3.5G3.9G4.3G4.7G6.7G
7Bms/tok @ 4th1275554768372
7Bms/tok @ 8th1224345525667
7Bbits/weight16.04.55.05.56.08.5
13Bperplexity5.25435.38605.36085.28565.27065.2548
13Bfile size25.0G6.8G7.6G8.3G9.1G13G
13Bms/tok @ 4th-103105148160131
13Bms/tok @ 8th-738298105128
13Bbits/weight16.04.55.05.56.08.5

困惑度-模型质量评估
Perplexity的计算基于模型对测试数据集中每个单词的预测概率,将这些概率取对数并取平均值,然后将结果取负指数得到Perplexity值。Perplexity值越低,表示模型对测试数据集的预测能力越好。
上表中的困惑度测量是针对wikitext2测试数据集进行的,上下文长度为512。每个token的时间是在MacBook M1 Pro 32GB RAM上使用4和8线程测量的。

# Variables
MODEL_ID = "mlabonne/EvolCodeLlama-7b"
QUANTIZATION_METHODS = ["q4_k_m"]

# Constants
MODEL_NAME = MODEL_ID.split('/')[-1]
GGML_VERSION = "gguf"

# Install llama.cpp
!git clone https://github.com/ggerganov/llama.cpp
!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make
!pip install -r llama.cpp/requirements.txt

# Download model
!git lfs install
!git clone https://huggingface.co/{MODEL_ID}

# Convert to fp16
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{GGML_VERSION}.fp16.bin"
!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}

# Quantize the model for each method in the QUANTIZATION_METHODS list
for method in QUANTIZATION_METHODS:
    qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{GGML_VERSION}.{method}.bin"
    !./llama.cpp/quantize {fp16} {qtype} {method}

终端输出如下:

Cloning into 'llama.cpp'...
remote: Enumerating objects: 7959, done.
remote: Counting objects: 100% (30/30), done.
remote: Compressing objects: 100% (22/22), done.
remote: Total 7959 (delta 11), reused 19 (delta 8), pack-reused 7929
Receiving objects: 100% (7959/7959), 7.71 MiB | 15.48 MiB/s, done.
Resolving deltas: 100% (5477/5477), done.
Already up to date.
I llama.cpp build info: 
I UNAME_S:  Linux
I UNAME_P:  x86_64
I UNAME_M:  x86_64
I CFLAGS:   -I.            -O3 -std=c11   -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -march=native -mtune=native -DGGML_USE_K_QUANTS
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -march=native -mtune=native -DGGML_USE_K_QUANTS
I LDFLAGS:  
I CC:       cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
I CXX:      g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0

Git LFS initialized.
Cloning into 'EvolCodeLlama-7b'...
remote: Enumerating objects: 35, done.
remote: Counting objects: 100% (32/32), done.
remote: Compressing objects: 100% (32/32), done.
remote: Total 35 (delta 8), reused 0 (delta 0), pack-reused 3
Unpacking objects: 100% (35/35), 483.46 KiB | 2.78 MiB/s, done.

  • Gguf
    GGUF是为GGML推理而提出的存储模型的文件格式,GGUF是为了能够快速加载、保存和阅读模型的二进制文件格式,通常由Pytorch或者其他框架训练的模型需要导出为GGUF格式后再由GGML推理使用,GGUF是GGML、GGMF以及GGJT的后继者。
enum ggml_type {
    GGML_TYPE_F32  = 0,
    GGML_TYPE_F16  = 1,
    GGML_TYPE_Q4_0 = 2,
    GGML_TYPE_Q4_1 = 3,
    // GGML_TYPE_Q4_2 = 4, support has been removed
    // GGML_TYPE_Q4_3 (5) support has been removed
    GGML_TYPE_Q5_0 = 6,
    GGML_TYPE_Q5_1 = 7,
    GGML_TYPE_Q8_0 = 8,
    GGML_TYPE_Q8_1 = 9,
    // k-quantizations
    GGML_TYPE_Q2_K = 10,
    GGML_TYPE_Q3_K = 11,
    GGML_TYPE_Q4_K = 12,
    GGML_TYPE_Q5_K = 13,
    GGML_TYPE_Q6_K = 14,
    GGML_TYPE_Q8_K = 15,
    GGML_TYPE_I8,
    GGML_TYPE_I16,
    GGML_TYPE_I32,
    GGML_TYPE_COUNT,
};

GGUF的具体细节参见https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md

模型训练流程

安装环境—>加载预训练模型—>微调模型—>保存模型
当然也可以直接使用huggingface开发的模型微调库TRL,这会更简洁。

安装环境

!pip install huggingface_hub
!pip install transformers==4.31.0
!pip install accelerate==0.21.0 peft==0.4.0 bitsandbytes==0.40.2 trl==0.4.7
!pip install sentencepiece

transformers是大语言模型通用的架构,peft(Parameter Efficiency Fine-Tuning) 是集成允许先进的训练技术,如k-bit量化、低秩(low-rank)逼近和梯度检查点,从而产生更高效和资源友好的模型。
trl是Hugging face提供的强化学习库,本文只是指令微调模型,并不涉及Reward model和RLHF训练部分。
bitsandbytes是对CUDA自定义函数的轻量级封装,特别是针对8位优化器、矩阵乘法(LLM.int8())和量化函数。

加载模型

导入预训练模型. 使用transformers库的AutoTokenizer类和 AutoModelForCausalLM 类自动下载和创建模型实例. The BitsAndBytesConfig类用于模型的量化参数设置,比如4-bit是量化位数,torch.bfloat16是微调时用的数据类型。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig

# Activate 4-bit precision base model loading
use_4bit = True
# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

model_name = "meta-llama/Llama-2-7b-chat-hf"
#Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# needed for llama tokenizer
tokenizer.pad_token = tokenizer.eos_token

####Below is for mlabonne/guanaco-llama2-1k dataset
#tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training


#Load the entire model on the GPU 0
device_map = {"": 0}

#Load base model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map=device_map
)

从peft库导入prepare_model_for_kbit_training函数,并使用该函数进行k-bit量化前准备. gradient_checkpointing_enable() 函数是能了在训练阶段可以降低内存使用的梯度 checkpointing特性。

from peft import prepare_model_for_kbit_training
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)

可训练参数

print_trainable_parameters函数用于打印模型可训练参数. 从peft库导入 LoraConfig 和 get_peft_model函数。LoraConfig用于配置缩减训练参数的LORA (Low Rank Approximation)方法。get_peft_model将LORA方法应用于模型. 打印的是模型可训练参数的情况。

从终端输出可以看到使用LORA方法后约11%的参数才会被微调时更新, 这大大降低了内存,不同的LORA参数会需要不同的内存,下图中的两种配置,分别对应了训练的时候需要内存情况。
不同的LORA参数设置,可训练的参数量会有所差异。

def print_trainable_parameters(model):
  """

  Prints the number of trainable parameters in the model.

  """
  trainable_params = 0
  all_param = 0
  for _, param in model.named_parameters():
    all_param += param.numel()
    if param.requires_grad:
      trainable_params += param.numel()
      print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
      )

from peft import LoraConfig, get_peft_model

# LoRA attention dimension 64, 8
lora_r = 8

# Alpha parameter for LoRA scaling 16,32
lora_alpha = 32

# Dropout probability for LoRA layers 0.1 0.05
lora_dropout = 0.1

peft_config = LoraConfig(
  r=lora_r,
  lora_alpha=lora_alpha,
  target_modules=["q_proj","v_proj"],
  lora_dropout=lora_dropout,
  bias="none",
  task_type="CAUSAL_LM"
)

model = get_peft_model(model, peft_config)
print_trainable_parameters(model)

该函数输出的一个示例是:

trainable params: 32768 || all params: 139493376 || trainable%: 0.02349072116513977
trainable params: 65536 || all params: 139526144 || trainable%: 0.04697040864255519
trainable params: 98304 || all params: 156336128 || trainable%: 0.06287989939216097
trainable params: 131072 || all params: 156368896 || trainable%: 0.08382229673093043
trainable params: 163840 || all params: 240820224 || trainable%: 0.06803415314487873
trainable params: 196608 || all params: 240852992 || trainable%: 0.08162987653481174
trainable params: 229376 || all params: 257662976 || trainable%: 0.08902171493975138
trainable params: 262144 || all params: 257695744 || trainable%: 0.10172616587722923
trainable params: 294912 || all params: 342147072 || trainable%: 0.086194512282718
trainable params: 327680 || all params: 342179840 || trainable%: 0.09576250897773522
trainable params: 360448 || all params: 358989824 || trainable%: 0.10040618867235634
trainable params: 393216 || all params: 359022592 || trainable%: 0.10952402683338658
trainable params: 425984 || all params: 443473920 || trainable%: 0.09605615590652997
trainable params: 458752 || all params: 443506688 || trainable%: 0.10343744805038882
trainable params: 491520 || all params: 460316672 || trainable%: 0.1067786656226086
trainable params: 524288 || all params: 460349440 || trainable%: 0.11388913604413203
trainable params: 557056 || all params: 544800768 || trainable%: 0.10224948875255624
trainable params: 589824 || all params: 544833536 || trainable%: 0.10825765321465088
trainable params: 622592 || all params: 561643520 || trainable%: 0.11085180863477247
trainable params: 655360 || all params: 561676288 || trainable%: 0.11667930692491686
trainable params: 688128 || all params: 646127616 || trainable%: 0.10650032330455289
trainable params: 720896 || all params: 646160384 || trainable%: 0.11156610925871926
trainable params: 753664 || all params: 662970368 || trainable%: 0.11367989225123257
trainable params: 786432 || all params: 663003136 || trainable%: 0.11861663351167015
trainable params: 819200 || all params: 747454464 || trainable%: 0.10959864974463515
trainable params: 851968 || all params: 747487232 || trainable%: 0.11397759901803915
trainable params: 884736 || all params: 764297216 || trainable%: 0.11575810842676156
trainable params: 917504 || all params: 764329984 || trainable%: 0.1200402992433174
trainable params: 950272 || all params: 848781312 || trainable%: 0.11195722461900763
trainable params: 983040 || all params: 848814080 || trainable%: 0.11581334748829802
...

加载训练数据集


from datasets import load_dataset
dataset = load_dataset("Abirate/english_quotes")
dataset = dataset.map(lambda samples: tokenizer(samples["quote"]), batched=True)

Downloading readme: 0%| | 0.00/5.55k [00:00<?, ?B/s]
Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]
Downloading data: 0%| | 0.00/647k [00:00<?, ?B/s]
Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]
Generating train split: 0 examples [00:00, ? examples/s]
Map: 0%| | 0/2508 [00:00<?, ? examples/s]
从Huggingface的datasets库导入load_dataset函数, 用其加载"Abirate/english_quotes"数据集中的“quotes”字段,然后使用LLaMA tokenizer对其tokenize化。

定义训练参数并训练模型

可以使用tranformers和trl库两种方式实现微调,TRL是huggingface开发的模型微调库,旨在简化和简化语言模型的微调过程,凭借其直观的接口和广泛的功能,TRL使研究人员和从业者能够轻松高效地微调大型语言模型,如LLaMA-v2-7B。

通过利用TRL,我们可以释放语言模型化的全部潜力。它为各种NLP任务提供了一套全面的工具和技术,包括文本分类、命名实体识别、情感分析等等。有了TRL,能够根据特定需求微调LLaMA-v2-7B定制模型的功能。
这里使用了transformers库中的Trainer类,使用模型, 训练数据集, 以及训练参数对Trainer实例化,训练数据集设置了训练时的各种参数,比如 batch size, learning rate, and 优化算法 (paged_adamw_8bit)。 DataCollatorForLanguageModeling 用于整理和批处理(batch)标记化数据。 最终调用trainer.train()方法开启微调训练。在后文又给了基于trl库的更简单的接口。

import transformers

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 1

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use, paged_adamw_8bit paged_adamw_32bit etc...
optim = "paged_adamw_8bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = 25

# Fine-tuned model name
new_model = "llama-2-7b-shichaog"

# Set training parameters
training_arguments = transformers.TrainingArguments(
    output_dir=output_dir,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim=optim,
    save_steps=save_steps,
    logging_steps=logging_steps,
    learning_rate=learning_rate,
    weight_decay=weight_decay,
    fp16=fp16,
    bf16=bf16,
    max_grad_norm=max_grad_norm,
    max_steps=max_steps,
    warmup_ratio=warmup_ratio,
    group_by_length=group_by_length,
    lr_scheduler_type=lr_scheduler_type,
    report_to="tensorboard"
)

## needed for llama tokenizer
tokenizer.pad_token = tokenizer.eos_token
trainer = transformers.Trainer(
    model=model,
    train_dataset=dataset["train"],
    # args=transformers.TrainingArguments(
    #     per_device_train_batch_size=1,
    #     gradient_accumulation_steps=4,
    #     warmup_steps=2,
    #     max_steps=10,
    #     learning_rate=2e-4,
    #     fp16=True,
    #     logging_steps=1,
    #     output_dir="outputs",
    #     optim="paged_adamw_8bit"
    #     ),
    args=training_arguments,
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)

model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()
trainer.model.save_pretrained(new_model)

请添加图片描述
图右侧显示了GPU内存使用情况
可以使用trl库接口实现上面的功能,这会比上面更简单一些,作用上是一致的。

################################################################################
# SFT parameters
################################################################################
from trl import SFTTrainer
# Maximum sequence length to use
max_seq_length = None

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {"": 0}

# Set supervised fine-tuning parameters from trl library
trainer2 = SFTTrainer(
    model=model,
    train_dataset=dataset["train"],
    peft_config=peft_config,
    dataset_text_field="quote",
    max_seq_length=max_seq_length,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=packing,
)

# Train model
trainer2.train()

# Save trained model
trainer2.model.save_pretrained(new_model)

请添加图片描述

这段代码和上一段使用transformers库的Trainer是一样的意义和作用,这里的SFTTrainer是对上面Trainer的封装,参数的意义都是一样的。因为trl库支持了PPO之类的RLHF,所以把SFT也支持了会使trl库更完备一些。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/102445.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【大数据模型】让chatgpt为开发增速(开发专用提示词)

汝之观览&#xff0c;吾之幸也&#xff01;本文主要聊聊怎样才能更好的使用提示词&#xff0c;给开发提速&#xff0c;大大缩减我们的开发时间&#xff0c;比如在开发中使用生成表结构脚本的提示词&#xff0c;生成代码的提示词等等。 一、准备 本文主要根据Claude进行演示&am…

成集云 | 多维表格自动化管理jira Server项目 | 解决方案

源系统成集云目标系统 方案介绍 基于成集云集成平台&#xff0c;在多维表格中的需求任务信息自动创建、更新同步至 Jira Server 的指定项目中&#xff0c;实现多维表格中一表管理 Jira Server 中的项目进度。 维格表是一种新一代的团队数据协作和项目管理工具&…

hadoop学习:mapreduce入门案例四:partitioner 和 combiner

先简单介绍一下partitioner 和 combiner Partitioner类 用于在Map端对key进行分区 默认使用的是HashPartitioner 获取key的哈希值使用key的哈希值对Reduce任务数求模决定每条记录应该送到哪个Reducer处理自定义Partitioner 继承抽象类Partitioner&#xff0c;重写getPartiti…

C++算法 —— 动态规划(1)斐波那契数列模型

文章目录 1、动规思路简介2、第N个泰波那契数列3、三步问题4、使用最小花费爬楼梯5、解码方法6、动规分析总结 1、动规思路简介 动规的思路有五个步骤&#xff0c;且最好画图来理解细节&#xff0c;不要怕麻烦。当你开始画图&#xff0c;仔细阅读题时&#xff0c;学习中的沉浸…

简明易懂:Python中的分支与循环

文章目录 前言分支结构if 语句&#xff1a;单一条件判断else语句&#xff1a;提供备选方案elif 语句&#xff1a;多条件判断嵌套的分支结构&#xff1a;复杂条件逻辑 循环结构for循环&#xff1a;遍历序列range()函数与for循环while循环&#xff1a;条件重复循环控制&#xff1…

day-01 Docker

一、docker简介 Docker 是一种开源的容器化平台&#xff0c;它可以帮助开发人员将应用程序及其依赖项打包成一个独立的、可移植的容器&#xff0c;而无需担心环境差异和依赖问题。通过使用 Docker&#xff0c;您可以更轻松地创建、分发和运行应用程序&#xff0c;无论是在开发、…

Java后端开发面试题——多线程

创建线程的方式有哪些&#xff1f; 继承Thread类 public class MyThread extends Thread {Overridepublic void run() {System.out.println("MyThread...run...");}public static void main(String[] args) {// 创建MyThread对象MyThread t1 new MyThread() ;MyTh…

纽扣电池/锂电池UN38.3安全检测报告

根据规章要求&#xff0c;航空公司和机场货物收运部门应对锂电池进行运输文件审查&#xff0c;重要的是每种型号的锂电池UN38.3安全检测报告。该报告可由的三方检测机构。如不能提供此项检测报告&#xff0c;将禁止锂电池进行航空运输. UN38.3包含产品&#xff1a;1、 锂电池2…

JVM 访问对象的两种方式

Java 程序会通过栈上的 reference 数据来操作堆上的具体对象。由于 reference 类型在《Java 虚拟机规范》里面只规定了它是一个指向对象的引用&#xff0c;并没有定义这个引用应该通过什么方式去定位、访问到堆中对象的具体位置&#xff0c;所以对象访问方式也是由虚拟机实现而…

【SpringSecurity】十二、集成JWT搭配Redis实现退出登录

文章目录 1、登出的实现思路2、集成Redis3、认证成功处理器4、退出成功处理器5、修改token校验过滤器6、调试 1、登出的实现思路 这是目前的token实现图&#xff1a; 因为JWT的无状态&#xff0c;服务端无法在使用过程中主动废止某个 token&#xff0c;或者更改 token 的权限…

【python爬虫】批量识别pdf中的英文,自动翻译成中文上

不管是上学还是上班,有时不可避免需要看英文文章,特别是在写毕业论文的时候。比较头疼的是把专业性很强的英文pdf文章翻译成中文。我记得我上学的时候,是一段一段复制,或者碰到不认识的单词就百度翻译一下,非常耗费时间。本文提供批量识别pdf中英文的方法,后续文章实现自…

Python3 条件控制

Python3 条件控制 Python 条件语句是通过一条或多条语句的执行结果&#xff08;True 或者 False&#xff09;来决定执行的代码块。 可以通过下图来简单了解条件语句的执行过程: 代码执行过程&#xff1a; if 语句 Python中if语句的一般形式如下所示&#xff1a; if conditi…

(超简单)将图片转换为ASCII字符图像

将一张图片转换为ASCII字符图像 原图&#xff1a; 效果图&#xff1a; import javax.imageio.ImageIO; import java.awt.image.BufferedImage; import java.io.File; import java.io.FileWriter; import java.io.IOException;public class ImageToASCII {/*** 将图片转换为A…

Java“牵手”1688商品列表数据,关键词搜索1688商品数据接口,1688API申请指南

1688商城是一个网上购物平台&#xff0c;售卖各类商品&#xff0c;包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取1688商品列表和商品详情页面数据&#xff0c;您可以通过开放平台的接口或者直接访问1688商城的网页来获取商品详情信息。以下是两种常用方法的介绍&…

Python教程(12)——Python数据结构集合set介绍

集合 创建集合访问集合删除集合修改集合元素添加集合元素删除集合元素 集合运算&#xff1a;并集&#xff08;Union&#xff09;交集&#xff08;Intersection&#xff09;差集&#xff08;Difference&#xff09;对称差集&#xff08;Symmetric Difference&#xff09; 集合的…

嵌入式学习之进程

1.进程间通信概述 UNIX系统IPC是各种进程通信方式的统称。 2.管道通信原理 特点&#xff1a; 1.它是半双工的&#xff08;即数据只能在一个方向上流动&#xff09;&#xff0c;具有固定的读端和写端。 2.它只能用于具有亲缘关系的进程之间通信&#xff08;也是父子进程或者…

基于springboot跟redis实现的排行榜功能(实战)

概述 前段时间&#xff0c;做了一个世界杯竞猜积分排行榜。对世界杯64场球赛胜负平进行猜测&#xff0c;猜对1分&#xff0c;错误0分&#xff0c;一人一场只能猜一次。 1.展示前一百名列表。 2.展示个人排名(如&#xff1a;张三&#xff0c;您当前的排名106579)。 一.redis so…

K8S访问控制------认证(authentication )、授权(authorization )、准入控制(admission control )体系

一、账号分类 在K8S体系中有两种账号类型:User accounts(用户账号),即针对human user的;Service accounts(服务账号),即针对pod的。这两种账号都可以访问 API server,都需要经历认证、授权、准入控制等步骤,相关逻辑图如下所示: 二、authentication (认证) 在…

23062day6

作业&#xff1a;将dict.txt导入到数据库中。 方法1&#xff1a;创建shell脚本&#xff0c; 调用指令创建数据库和表格&#xff0c;使用循环在循环中用数组存储dict.txt的内容并插入表格中。 方法2&#xff1a;在终端创建数据库和表格&#xff0c;将dict.txt中的内容手动输入…

带纽扣电池产品出口澳洲安全标准,纽扣电池IEC 60086认证

澳大利亚政府公布了《消费品&#xff08;纽扣/硬币电池&#xff09;安全标准》和《消费品&#xff08;纽扣/硬币电池&#xff09;信息标准》。届时出口纽扣/硬币电池以及含有纽扣/硬币电池产品到澳大利亚的供应商&#xff0c;必须遵守这些标准中的要求。 一、 安全标准及信息标…