先简单介绍一下partitioner 和 combiner
Partitioner类
- 用于在Map端对key进行分区
- 默认使用的是HashPartitioner
- 获取key的哈希值
- 使用key的哈希值对Reduce任务数求模
- 决定每条记录应该送到哪个Reducer处理
- 默认使用的是HashPartitioner
- 自定义Partitioner
- 继承抽象类Partitioner,重写getPartition方法
- job.setPartitionerClass(MyPartitioner.class)
Combiner类
- Combiner相当于本地化的Reduce操作
- 在shuffle之前进行本地聚合
- 用于性能优化,可选项
- 输入和输出类型一致
- Reducer可以被用作Combiner的条件
- 符合交换律和结合律
- 实现Combiner
- job.setCombinerClass(WCReducer.class)
我们进入案例来看这两个知识点
一 案例需求
一个存放电话号码的文本,我们需要136 137,138 139和其它开头的号码分开存放统计其每个数字开头的号码个数
二 PhoneMapper 类
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class PhoneMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String phone = value.toString();
Text text = new Text(phone);
IntWritable intWritable = new IntWritable(1);
context.write(text,intWritable);
}
}
三 PhoneReducer 类
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class PhoneReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count = 0;
for (IntWritable intWritable : values){
count += intWritable.get();
}
context.write(key, new IntWritable(count));
}
}
四 PhonePartitioner 类
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
public class PhonePartitioner extends Partitioner<Text, IntWritable> {
@Override
public int getPartition(Text text, IntWritable intWritable, int i) {
//136,137 138,139 其它号码放一起
if("136".equals(text.toString().substring(0,3)) || "137".equals(text.toString().substring(0,3))){
return 0;
}else if ("138".equals(text.toString().substring(0,3)) || "139".equals(text.toString().substring(0,3))){
return 1;
}else {
return 2;
}
}
}
五 PhoneCombiner 类
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class PhoneCombiner extends Reducer<Text, IntWritable,Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int count = 0;
for(IntWritable intWritable : values){
count += intWritable.get();
}
context.write(new Text(key.toString().substring(0,3)), new IntWritable(count));
}
}
六 PhoneDriver 类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class PhoneDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(PhoneDriver.class);
job.setMapperClass(PhoneMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setCombinerClass(PhoneCombiner.class);
job.setPartitionerClass(PhonePartitioner.class);
job.setNumReduceTasks(3);
job.setReducerClass(PhoneReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
Path inPath = new Path("in/demo4/phone.csv");
FileInputFormat.setInputPaths(job, inPath);
Path outPath = new Path("out/out6");
FileSystem fs = FileSystem.get(outPath.toUri(),conf);
if (fs.exists(outPath)){
fs.delete(outPath, true);
}
FileOutputFormat.setOutputPath(job, outPath);
job.waitForCompletion(true);
}
}
七 小结
该案例新知识点在于分区(partition)和结合(combine)
这次代码的流程是
driver——》mapper——》partitioner——》combiner——》reducer
map 每处理一条数据都经过一次 partitioner 分区然后存到环形缓存区中去,然后map再去处理下一条数据以此反复直至所有数据处理完成
combine 则是将环形缓存区溢出的缓存文件合并,并提前进行一次排序和计算(对每个溢出文件计算后再合并)最后将一个大的文件给到 reducer,这样大大减少了 reducer 的计算负担