Linux系统中u-boot启动流程分析(详解)

     大家好,我是ST小智,今天给大家分享一下,u-boot的启动流程。

       

     今天给大家全面的分析一下u-boot启动流程。整理这篇文章花费时间较长,中间很长时间未更新,希望这篇文章对大家有所帮助。

本章主要是详细的分析一下uboot的启动流程,理清uboot是如何启动的。通过对uboot启动流程的梳理,我们就可以掌握一些外设是在哪里被初始化的,这样当我们需要修改这些外设驱动的时候就会心里有数。另外,通过分析uboot的启动流程可以了解Linux内核是如何被启动的。

在看本章之前,个人建议先去看一下前几篇文章。对u-boot的开发环境搭建、u-boot整体移植和u-boot下网络调试有一点了解后,再来看本篇文章,这样可能比较容易看明白。

本章主要是详细的分析一下uboot的启动流程,理清uboot是如何启动的。通过对uboot启动流程的梳理,我们就可以掌握一些外设是在哪里被初始化的,这样当我们需要修改这些外设驱动的时候就会心里有数。另外,通过分析uboot的启动流程可以了解Linux内核是如何被启动的。

一、u-boot启动详细函数调用流程

首先给大家先看一下,u-boot启动从入口函数到启动内核的详细函数调用流程的层级关系图,对u-boot启动的整体有一个快速了解,后面会详细介绍各个函数的作用。

u-boot:启动详细的代码调用流程
u-boot.lds:(arch/arm/cpu/u-boot.lds)
    |-->_start:(arch/arm/lib/vectors.S)
        |-->reset(arch/arm/cpu/armv7/start.S)    
            |-->save_boot_params(arch/arm/cpu/armv7/start.S)/*将引导参数保存到内存中*/
                |-->save_boot_params_ret(arch/arm/cpu/armv7/start.S)
                    |-->cpu_init_cp15(arch/arm/cpu/armv7/start.S)/*初始化*/
                    |-->cpu_init_crit(arch/arm/cpu/armv7/start.S)
                        |-->lowlevel_init(arch/arm/cpu/armv7/lowlevel_init.S)
                    |-->_main(arch/arm/lib/crt0.S)
                        |-->board_init_f_alloc_reserve(common/init/board_init.c)/*为u-boot的gd结构体分配空间*/
                        |-->board_init_f_init_reserve(common/init/board_init.c)    /*将gd结构体清零*/
                        |-->board_init_f(common/board_f.c)
                            |-->initcall_run_list(include/initcall.h)    /*初始化序列函数*/
                                |-->init_sequence_f[](common/board_f.c)    /* 初始化序列函数数组 */
                                    |-->board_early_init_f(board/freescale/mx6ull_toto/mx6ull_toto.c)/*初始化串口的IO配置*/
                                    |-->timer_init(arch/arm/imx-common/timer.c)    /*初始化内核定时器,为uboot提供时钟节拍*/
                                    |-->init_baud_rate(common/board_f.c)        /*初始化波特率*/
                                    |-->serial_init(drivers/serial/serial.c)    /*初始化串口通信设置*/
                                    |-->console_init_f(common/console.c)        /*初始化控制台*/
                                    |-->...
                        |-->relocate_code(arch/arm/lib/relocate.S)    /*主要完成镜像拷贝和重定位*/
                        |-->relocate_vectors(arch/arm/lib/relocate.S)/*重定位向量表*/
                        |-->board_init_r(common/board_r.c)/*板级初始化*/
                            |-->initcall_run_list(include/initcall.h)/*初始化序列函数*/
                                |-->init_sequence_r[](common/board_f.c)/*序列函数*/
                                    |-->initr_reloc(common/board_r.c)    /*设置 gd->flags,标记重定位完成*/
                                    |-->serial_initialize(drivers/serial/serial-uclass.c)/*初始化串口*/
                                        |-->serial_init(drivers/serial/serial-uclass.c)     /*初始化串口*/
                                    |-->initr_mmc(common/board_r.c)                         /*初始化emmc*/
                                        |-->mmc_initialize(drivers/mmc/mmc.c)
                                            |-->mmc_do_preinit(drivers/mmc/mmc.c)
                                                |-->mmc_start_init(drivers/mmc/mmc.c)
                                    |-->console_init_r(common/console.c)                /*初始化控制台*/
                                    |-->interrupt_init(arch/arm/lib/interrupts.c)        /*初始化中断*/
                                    |-->initr_net(common/board_r.c)                        /*初始化网络设备*/
                                        |-->eth_initialize(net/eth-uclass.c)
                                            |-->eth_common_init(net/eth_common.c)
                                                |-->phy_init(drivers/net/phy/phy.c)
                                            |-->uclass_first_device_check(drivers/core/uclass.c)
                                                |-->uclass_find_first_device(drivers/core/uclass.c)
                                                |-->device_probe(drivers/core/device.c)
                                                    |-->device_of_to_plat(drivers/core/device.c)
                                                        |-->drv->of_to_plat
                                                            |-->fecmxc_of_to_plat(drivers/net/fec_mxc.c)/*解析设备树信息*/
                                                    |-->device_get_uclass_id(drivers/core/device.c)
                                                    |-->uclass_pre_probe_device(drivers/core/uclass.c)
                                                    |-->drv->probe(dev)
                                                        /*drivers/net/fec_mxc.c*/
                                                        U_BOOT_DRIVER(fecmxc_gem) = {
                                                            .name    = "fecmxc",
                                                            .id    = UCLASS_ETH,
                                                            .of_match = fecmxc_ids,
                                                            .of_to_plat = fecmxc_of_to_plat,
                                                            .probe    = fecmxc_probe,
                                                            .remove    = fecmxc_remove,
                                                            .ops    = &fecmxc_ops,
                                                            .priv_auto    = sizeof(struct fec_priv),
                                                            .plat_auto    = sizeof(struct eth_pdata),
                                                        };
                                                        |-->fecmxc_probe(drivers/net/fec_mxc.c)/*探测和初始化*/
                                                            |-->fec_get_miibus(drivers/net/fec_mxc.c)
                                                                |-->mdio_alloc(drivers/net/fec_mxc.c)
                                                                |-->bus->read = fec_phy_read;
                                                                |-->bus->write = fec_phy_write;
                                                                |-->mdio_register(common/miiphyutil.c)
                                                                |-->fec_mii_setspeed(drivers/net/fec_mxc.c)
                                                            |-->fec_phy_init(drivers/net/fec_mxc.c)
                                                                |-->device_get_phy_addr(drivers/net/fec_mxc.c)
                                                                |-->phy_connect(drivers/net/phy/phy.c)
                                                                    |-->phy_find_by_mask(drivers/net/phy/phy.c)
                                                                        |-->bus->reset(bus)
                                                                        |-->get_phy_device_by_mask(drivers/net/phy/phy.c)
                                                                            |-->create_phy_by_mask(drivers/net/phy/phy.c)
                                                                                |-->phy_device_create(drivers/net/phy/phy.c)
                                                                                    |-->phy_probe(drivers/net/phy/phy.c)
                                                                    |-->phy_connect_dev(drivers/net/phy/phy.c)
                                                                        |-->phy_reset(drivers/net/phy/phy.c)
                                                                |-->phy_config(drivers/net/phy/phy.c)
                                                                    |-->board_phy_config(drivers/net/phy/phy.c)
                                                                        |-->phydev->drv->config(phydev)
                                                                            /*drivers/net/phy/smsc.c*/
                                                                            static struct phy_driver lan8710_driver = {
                                                                                .name = "SMSC LAN8710/LAN8720",
                                                                                .uid = 0x0007c0f0,
                                                                                .mask = 0xffff0,
                                                                                .features = PHY_BASIC_FEATURES,
                                                                                .config = &genphy_config_aneg,
                                                                                .startup = &genphy_startup,
                                                                                .shutdown = &genphy_shutdown,
                                                                            };
                                                                            |-->genphy_config_aneg(drivers/net/phy/phy.c)
                                                                                |-->phy_reset(需要手动调用)(drivers/net/phy/phy.c)
                                                                                |-->genphy_setup_forced(drivers/net/phy/phy.c)
                                                                                |-->genphy_config_advert(drivers/net/phy/phy.c)
                                                                                |-->genphy_restart_aneg(drivers/net/phy/phy.c)
                                                    |-->uclass_post_probe_device(drivers/core/uclass.c)
                                                        |-->uc_drv->post_probe(drivers/core/uclass.c)
                                                            /*net/eth-uclass.c*/
                                                            UCLASS_DRIVER(ethernet) = {
                                                                .name        = "ethernet",
                                                                .id        = UCLASS_ETH,
                                                                .post_bind    = eth_post_bind,
                                                                .pre_unbind    = eth_pre_unbind,
                                                                .post_probe    = eth_post_probe,
                                                                .pre_remove    = eth_pre_remove,
                                                                .priv_auto    = sizeof(struct eth_uclass_priv),
                                                                .per_device_auto    = sizeof(struct eth_device_priv),
                                                                .flags        = DM_UC_FLAG_SEQ_ALIAS,
                                                            };
                                                            |-->eth_post_probe(net/eth-uclass.c)
                                                                |-->eth_write_hwaddr(drivers/core/uclass.c)
                                    |-->...
                                    |-->run_main_loop(common/board_r.c)/*主循环,处理命令*/
                                        |-->main_loop(common/main.c)
                                            |-->bootdelay_process(common/autoboot.c)    /*读取环境变量bootdelay和bootcmd的内容*/
                                            |-->autoboot_command(common/autoboot.c)        /*倒计时按下执行,没有操作执行bootcmd的参数*/
                                                |-->abortboot(common/autoboot.c)
                                                    |-->printf("Hit any key to stop autoboot: %2d ", bootdelay);
                                                    /*到这里就是我们看到uboot延时3s启动内核的地方*/
                                            |-->cli_loop(common/cli.c)    /*倒计时按下space键,执行用户输入命令*/

二、程序入口

U-Boot 源码文件众多,我们如何知道最开始的启动文件(程序入口)是哪个呢?程序的链接是由链接脚本来决定的,所以通过链接脚本可以找到程序的入口,链接脚本为arch/arm/cpu/u-boot.lds,它描述了如何生成最终的二进制文件,其中就包含程序入口。

三、链接脚本 u-boot.lds 详解

1.u-boot.lds

u-boot.lds,文件所在位置arch/arm/cpu/u-boot.lds

/* SPDX-License-Identifier: GPL-2.0+ */
/*
 * Copyright (c) 2004-2008 Texas Instruments
 *
 * (C) Copyright 2002
 * Gary Jennejohn, DENX Software Engineering, <garyj@denx.de>
 */

#include <config.h>
#include <asm/psci.h>

/* 指定输出可执行文件: "elf 32位 小端格式 arm指令" */
OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")
/* 指定输出可执行文件的目标架构:"arm" */
OUTPUT_ARCH(arm)
/* 指定输出可执行文件的起始地址为:"_start" */
ENTRY(_start)
SECTIONS
{
#ifndef CONFIG_CMDLINE
    /DISCARD/ : { *(__u_boot_list_2_cmd_*) }
#endif
#if defined(CONFIG_ARMV7_SECURE_BASE) && defined(CONFIG_ARMV7_NONSEC)
    /*
     * If CONFIG_ARMV7_SECURE_BASE is true, secure code will not
     * bundle with u-boot, and code offsets are fixed. Secure zone
     * only needs to be copied from the loading address to
     * CONFIG_ARMV7_SECURE_BASE, which is the linking and running
     * address for secure code.
     *
     * If CONFIG_ARMV7_SECURE_BASE is undefined, the secure zone will
     * be included in u-boot address space, and some absolute address
     * were used in secure code. The absolute addresses of the secure
     * code also needs to be relocated along with the accompanying u-boot
     * code.
     *
     * So DISCARD is only for CONFIG_ARMV7_SECURE_BASE.
     */
    /DISCARD/ : { *(.rel._secure*) }
#endif
    /* 
     * 指定可执行文件(image)的全局入口地址,通常都放在ROM(flash)0x0位置
     * 设置 0 的原因是 arm 内核的处理器,上电后默认是从 0x00000000 处启动
     */
    . = 0x00000000;

    . = ALIGN(4);                     ``````````/* 中断向量表 */
    .text :
    {
        *(.__image_copy_start)         /* u-boot 的设计中需要将 u-boot 的镜像拷贝到 ram(sdram,ddr....)中执行,这里表示复制的开始地址 */
        *(.vectors)                    /* 中断向量表 */
        CPUDIR/start.o (.text*)        /* CPUDIR/start.o 中的所有.text 段 */
    }

    /* This needs to come before *(.text*) */
    .__efi_runtime_start : {
        *(.__efi_runtime_start)
    }

    .efi_runtime : {
        *(.text.efi_runtime*)
        *(.rodata.efi_runtime*)
        *(.data.efi_runtime*)
    }

    .__efi_runtime_stop : {
        *(.__efi_runtime_stop)
    }

    .text_rest :
    {
        *(.text*)
    }

#ifdef CONFIG_ARMV7_NONSEC

    /* Align the secure section only if we're going to use it in situ */
    .__secure_start
#ifndef CONFIG_ARMV7_SECURE_BASE
        ALIGN(CONSTANT(COMMONPAGESIZE))
#endif
    : {
        KEEP(*(.__secure_start))
    }

#ifndef CONFIG_ARMV7_SECURE_BASE
#define CONFIG_ARMV7_SECURE_BASE
#define __ARMV7_PSCI_STACK_IN_RAM
#endif

    .secure_text CONFIG_ARMV7_SECURE_BASE :
        AT(ADDR(.__secure_start) + SIZEOF(.__secure_start))
    {
        *(._secure.text)
    }

    .secure_data : AT(LOADADDR(.secure_text) + SIZEOF(.secure_text))
    {
        *(._secure.data)
    }

#ifdef CONFIG_ARMV7_PSCI
    .secure_stack ALIGN(ADDR(.secure_data) + SIZEOF(.secure_data),
                CONSTANT(COMMONPAGESIZE)) (NOLOAD) :
#ifdef __ARMV7_PSCI_STACK_IN_RAM
        AT(ADDR(.secure_stack))
#else
        AT(LOADADDR(.secure_data) + SIZEOF(.secure_data))
#endif
    {
        KEEP(*(.__secure_stack_start))

        /* Skip addreses for stack */
        . = . + CONFIG_ARMV7_PSCI_NR_CPUS * ARM_PSCI_STACK_SIZE;

        /* Align end of stack section to page boundary */
        . = ALIGN(CONSTANT(COMMONPAGESIZE));

        KEEP(*(.__secure_stack_end))

#ifdef CONFIG_ARMV7_SECURE_MAX_SIZE
        /*
         * We are not checking (__secure_end - __secure_start) here,
         * as these are the load addresses, and do not include the
         * stack section. Instead, use the end of the stack section
         * and the start of the text section.
         */
        ASSERT((. - ADDR(.secure_text)) <= CONFIG_ARMV7_SECURE_MAX_SIZE,
               "Error: secure section exceeds secure memory size");
#endif
    }

#ifndef __ARMV7_PSCI_STACK_IN_RAM
    /* Reset VMA but don't allocate space if we have secure SRAM */
    . = LOADADDR(.secure_stack);
#endif

#endif

    .__secure_end : AT(ADDR(.__secure_end)) {
        *(.__secure_end)
        LONG(0x1d1071c);    /* Must output something to reset LMA */
    }
#endif
    /* 
     * .rodata 段,确保是以4字节对齐 
     */
    . = ALIGN(4);
    .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }

    /* 
     * data段,确保是以4字节对齐
     */
    . = ALIGN(4);
    .data : {
        *(.data*)
    }

    . = ALIGN(4);

    . = .;

    /* 
     * u_boot_list 段,确保是以 4 字节对齐 
     * 这里存放的都是 u_boot_list 中的函数
     */
    . = ALIGN(4);
    __u_boot_list : {
        KEEP(*(SORT(__u_boot_list*)));
    }

    . = ALIGN(4);

    .efi_runtime_rel_start :
    {
        *(.__efi_runtime_rel_start)
    }

    .efi_runtime_rel : {
        *(.rel*.efi_runtime)
        *(.rel*.efi_runtime.*)
    }

    .efi_runtime_rel_stop :
    {
        *(.__efi_runtime_rel_stop)
    }

    /* 
     * __image_copy_end 也是个符号表示一个结束地址,确保是以4字节对齐 
     */
    . = ALIGN(4);

    .image_copy_end :        /* u-boot 的设计中需要将 u-boot 的镜像拷贝到ram(sdram,ddr....)中执行,这里表示复制的结束地址 */
    {
        *(.__image_copy_end)
    }

    .rel_dyn_start :        /*  .rel.dyn 段起始地址 */
    {
        *(.__rel_dyn_start)
    }

    .rel.dyn : {
        *(.rel*)
    }

    .rel_dyn_end :            /*  .rel.dyn 段结束地址 */
    {
        *(.__rel_dyn_end)
    }

    .end :
    {
        *(.__end)
    }

    _image_binary_end = .;    /* bin文件结束地址 */

    /*
     * Deprecated: this MMU section is used by pxa at present but
     * should not be used by new boards/CPUs.
     */
    . = ALIGN(4096);
    .mmutable : {
        *(.mmutable)
    }

/*
 * Compiler-generated __bss_start and __bss_end, see arch/arm/lib/bss.c
 * __bss_base and __bss_limit are for linker only (overlay ordering)
 */

    .bss_start __rel_dyn_start (OVERLAY) : {    /* .bss段起始地址 */
        KEEP(*(.__bss_start));
        __bss_base = .;
    }

    .bss __bss_base (OVERLAY) : {
        *(.bss*)
         . = ALIGN(4);
         __bss_limit = .;
    }

    .bss_end __bss_limit (OVERLAY) : {            /* .bss段结束地址 */
        KEEP(*(.__bss_end));
    }

    .dynsym _image_binary_end : { *(.dynsym) }
    .dynbss : { *(.dynbss) }
    .dynstr : { *(.dynstr*) }
    .dynamic : { *(.dynamic*) }
    .plt : { *(.plt*) }
    .interp : { *(.interp*) }
    .gnu.hash : { *(.gnu.hash) }
    .gnu : { *(.gnu*) }
    .ARM.exidx : { *(.ARM.exidx*) }
    .gnu.linkonce.armexidx : { *(.gnu.linkonce.armexidx.*) }
}

通过上面的分析可以看出:由于在链接脚本中规定了文件start.o(对应于start.S)作为整个uboot的起始点,因此启动uboot时会执行首先执行start.S。一般来说,内存空间可分为代码段、数据段、全局变量段、未初始化变量区、栈区、堆区等.其中,栈区由指针SP决定,堆区实质上是由C代码实现的,其它段则由编译器决定.从上面的分析可以看出,从0x00000000地址开始,编译器首先将代码段放在最开始的位置,然后是数据段,然后是bss段(未初始化变量区)。

2.u-boot.map

u-boot.map 是uboot的映射文件,可以从此文件看到某个文件或者函数链接到了哪个地址,下面打开 u-boot.map,查看各个段的起始地址和结束分别是多少;

内存配置

名称           来源             长度             属性
*default*        0x00000000         0xffffffff

链结器命令稿和内存映射

段 .text 的地址设置为 0x87800000
                0x00000000                . = 0x0
                0x00000000                . = ALIGN (0x4)

.text           0x87800000      0x3a8
 *(.__image_copy_start)
 .__image_copy_start
                0x87800000        0x0 arch/arm/lib/sections.o
                0x87800000                __image_copy_start
 *(.vectors)
 .vectors       0x87800000      0x2e8 arch/arm/lib/vectors.o
                0x87800000                _start
                0x87800020                _undefined_instruction
                0x87800024                _software_interrupt
                0x87800028                _prefetch_abort
                0x8780002c                _data_abort
                0x87800030                _not_used
                0x87800034                _irq
                0x87800038                _fiq
                0x87800040                IRQ_STACK_START_IN
 arch/arm/cpu/armv7/start.o(.text*)
 .text          0x878002e8       0xc0 arch/arm/cpu/armv7/start.o
                0x878002e8                reset
                0x878002ec                save_boot_params_ret
                0x87800328                c_runtime_cpu_setup
                0x87800338                save_boot_params
                0x8780033c                cpu_init_cp15
                0x8780039c                cpu_init_crit
...

从u-boot.map映射文件种,可以知道__image_copy_start为0x87800000,而.text的起始地址也是0x87800000,.vectors 段的起始地址也是0x87800000,可以得出各个段的地址关系表,如下;

变量名地址描述
__image_copy_start0x87800000u-boot拷贝的起始地址
__image_copy_end0x87850ff0u-boot拷贝的结束地址
.vectors0x87800000中断向量表的起始地址
.text0x878002e8.text段的起始地址
__rel_dyn_start0x87850ff0.rel_dyn段的起始地址
__rel_dyn_end0x8785cf30.rel_dyn段的结束地址
_image_binary_end0x8785cf30镜像结束地址
__bss_start0x87850ff0.bss段的起始地址
__bss_end0x878585c0.bss段的结束地址

注:表中的变量除了__image_copy_start以外,其他的变量值每次编译的时候可能会变化。修改uboot 代码、配置等都会影响到这些值。所以,一切以实际值为准!

四、_start函数详解

从链接文件(u-boot.lds) 中知道了程序入口是 _start,_start 在文件 arch/arm/lib/vectors.S 中有定义,具体代码如下;

/*
 *************************************************************************
 *
 * Symbol _start is referenced elsewhere, so make it global
 *
 *************************************************************************
 */

.globl _start

/*
 *************************************************************************
 *
 * Vectors have their own section so linker script can map them easily
 *
 *************************************************************************
 */

    .section ".vectors", "ax"

#if defined(CONFIG_ENABLE_ARM_SOC_BOOT0_HOOK)
/*
 * Various SoCs need something special and SoC-specific up front in
 * order to boot, allow them to set that in their boot0.h file and then
 * use it here.
 *
 * To allow a boot0 hook to insert a 'special' sequence after the vector
 * table (e.g. for the socfpga), the presence of a boot0 hook supresses
 * the below vector table and assumes that the vector table is filled in
 * by the boot0 hook.  The requirements for a boot0 hook thus are:
 *   (1) defines '_start:' as appropriate
 *   (2) inserts the vector table using ARM_VECTORS as appropriate
 */
#include <asm/arch/boot0.h>
#else

/*
 *************************************************************************
 *
 * Exception vectors as described in ARM reference manuals
 *
 * Uses indirect branch to allow reaching handlers anywhere in memory.
 *
 *************************************************************************
 */

_start:
#ifdef CONFIG_SYS_DV_NOR_BOOT_CFG
    .word   CONFIG_SYS_DV_NOR_BOOT_CFG
#endif
    ARM_VECTORS
#endif /* !defined(CONFIG_ENABLE_ARM_SOC_BOOT0_HOOK) */

#if !CONFIG_IS_ENABLED(SYS_NO_VECTOR_TABLE)
/*
 *************************************************************************
 *
 * Indirect vectors table
 *
 * Symbols referenced here must be defined somewhere else
 *
 *************************************************************************
 */

    .globl  _reset
    .globl  _undefined_instruction     /* 未定义指令异常 */
    .globl  _software_interrupt        /* 软中断异常 */
    .globl  _prefetch_abort            /* 预取异常 */
    .globl  _data_abort                /* 数据异常 */
    .globl  _not_used                  /* 未使用 */
    .globl  _irq                       /* 外部中断请求IRQ */
    .globl  _fiq                       /* 快束中断请求FIQ */
    ...

从u-boot.map映射文件可以得出.vectors段的最开始就是_start,而从_start定义我们可以知道首先是跳转到reset函数,再设置中断向量表。

五、reset函数详解

1.reset函数讲解

从程序入口_start定义中得出,_start中首先是跳转到reset函数,reset函数在文件arch/arm/cpu/armv7/start.S中有定义,具体代码如下;

/*************************************************************************
 *
 * Startup Code (reset vector)
 *
 * Do important init only if we don't start from memory!
 * Setup memory and board specific bits prior to relocation.
 * Relocate armboot to ram. Setup stack.
 *
 *************************************************************************/

    .globl  reset
    .globl  save_boot_params_ret
    .type   save_boot_params_ret,%function
#ifdef CONFIG_ARMV7_LPAE
    .global switch_to_hypervisor_ret
#endif

reset:
    /* Allow the board to save important registers */
    b   save_boot_params
save_boot_params_ret:
    ...

reset函数只有一句跳转语句,直接跳转到了save_boot_params函数,而save_boot_params函数同样定义在start.S里面,定义如下:

/*************************************************************************
 *
 * void save_boot_params(u32 r0, u32 r1, u32 r2, u32 r3)
 *  __attribute__((weak));
 *
 * Stack pointer is not yet initialized at this moment
 * Don't save anything to stack even if compiled with -O0
 *
 *************************************************************************/
ENTRY(save_boot_params)
    b   save_boot_params_ret        @ back to my caller
####2.save_boot_params_ret函数讲解
同样save_boot_params函数也是只有一句跳转语句,跳转到save_boot_params_ret函数save_boot_params_ret 函数代码如下:
save_boot_params_ret:
#ifdef CONFIG_POSITION_INDEPENDENT
    /*
     * Fix .rela.dyn relocations. This allows U-Boot to loaded to and
     * executed at a different address than it was linked at.
     */
pie_fixup:
    /* 获取标号reset的运行地址到r0 */
    adr r0, reset   /* r0 <- Runtime value of reset label */
    /* 获取标号reset的链接地址到r0 */
    ldr r1, =reset  /* r1 <- Linked value of reset label */
    /* 计算运行地址和link地址的偏移 */
    subs    r4, r0, r1  /* r4 <- Runtime-vs-link offset */
    /* 如果为0,说明link地址和运行地址一致,不需要重定位直接退出 */
    beq pie_fixup_done

    /* 
     * 下面几行代码的作用是计算运行时rel.dyn段在内存中实际地址,只有获取这个段的
     * 真实的起使地址才能依据其中的信息进行重定位。
     */
    //获取pie_fixup标号的运行地址
    adr r0, pie_fixup
    //_rel_dyn_start_ofs链接时rel.dyn段相对pie_fixup标号的偏移
    ldr r1, _rel_dyn_start_ofs
    add r2, r0, r1  /* r2 <- Runtime &__rel_dyn_start */
    //计算rel.dyn运行时起始地址
    ldr r1, _rel_dyn_end_ofs
    //计算rel.dyn运行结束地址
    add r3, r0, r1  /* r3 <- Runtime &__rel_dyn_end */

pie_fix_loop:
    //获取rel.dyn段地址中的内容
    ldr r0, [r2]    /* r0 <- Link location */
    //获取rel.dyn段地址接下来4个字节中的内容
    ldr r1, [r2, #4]    /* r1 <- fixup */
    //如果r1等于23则执行重定位
    cmp r1, #23     /* relative fixup? */
    bne pie_skip_reloc

    /* relative fix: increase location by offset */
    add r0, r4
    ldr r1, [r0]
    add r1, r4
    str r1, [r0]
    str r0, [r2]
    add r2, #8
pie_skip_reloc:
    //判断是否所有表项都修改完成,没完成则循环操作
    cmp r2, r3
    blo pie_fix_loop
pie_fixup_done:
#endif

#ifdef CONFIG_ARMV7_LPAE
/*
 * check for Hypervisor support
 */
    mrc p15, 0, r0, c0, c1, 1       @ read ID_PFR1
    and r0, r0, #CPUID_ARM_VIRT_MASK    @ mask virtualization bits
    cmp r0, #(1 << CPUID_ARM_VIRT_SHIFT)
    beq switch_to_hypervisor
switch_to_hypervisor_ret:
#endif
    /*
     * disable interrupts (FIQ and IRQ), also set the cpu to SVC32 mode,
     * except if in HYP mode already
     */
    /* 将程序状态寄存器读取到通用寄存器R0 */
    mrs r0, cpsr
    and r1, r0, #0x1f       @ mask mode bits
    teq r1, #0x1a       @ test for HYP mode
    /* 清除当前的工作模式 */
    bicne   r0, r0, #0x1f       @ clear all mode bits
    /* 设置SVC模式,即超级管理员权限 */
    orrne   r0, r0, #0x13       @ set SVC mode
    /* 失能中断FIQ和IRQ */
    orr r0, r0, #0xc0       @ disable FIQ and IRQ
    msr cpsr,r0

#if !CONFIG_IS_ENABLED(SYS_NO_VECTOR_TABLE)
/*
 * Setup vector:
 */
    /* Set V=0 in CP15 SCTLR register - for VBAR to point to vector */
    mrc p15, 0, r0, c1, c0, 0   @ Read CP15 SCTLR Register
    bic r0, #CR_V       @ V = 0
    mcr p15, 0, r0, c1, c0, 0   @ Write CP15 SCTLR Register

#ifdef CONFIG_HAS_VBAR
    /* Set vector address in CP15 VBAR register */
    ldr r0, =_start
    mcr p15, 0, r0, c12, c0, 0  @Set VBAR
#endif
#endif

    /* the mask ROM code should have PLL and others stable */
#if !CONFIG_IS_ENABLED(SKIP_LOWLEVEL_INIT)
#ifdef CONFIG_CPU_V7A
    bl  cpu_init_cp15
#endif
#if !CONFIG_IS_ENABLED(SKIP_LOWLEVEL_INIT_ONLY)
    bl  cpu_init_crit
#endif
#endif

    bl  _main

save_boot_params_ret函数主要的操作如下:

  • 1.如果定义宏CONFIG_POSITION_INDEPENDENT,则进行修正重定位的问题(pie_fixup、pie_fix_loop、pie_skip_reloc);

  • 2.如果定义宏CONFIG_ARMV7_LPAE,LPAE(Large Physical Address Extensions)是ARMv7系列的一种地址扩展技术,可以让32位的ARM最大能支持到1TB的内存空间,由于嵌入式ARM需求的内存空间一般不大,所以一般不使用LPAE技术;

  • 3.设置CPU为SVC32模式,除非已经处于HYP模式,同时禁止中断(FIQ和IRQ);

  • 4.设置中断向量表地址为_start函数的地址,在map文件中可以看到,为0x87800000;

  • 5.进行CPU初始化,调用函数cpu_init_cp15和cpu_init_crit分别初始化CP15和CRIT;

  • 6.最后跳转到_main函数。

3.cpu_init_cp15函数讲解

cpu_init_cp15函数,在文件arch/arm/cpu/armv7/start.S中定义,具体代码如下;

/*************************************************************************
 *
 * cpu_init_cp15
 *
 * Setup CP15 registers (cache, MMU, TLBs). The I-cache is turned on unless
 * CONFIG_SYS_ICACHE_OFF is defined.
 *
 *************************************************************************/
ENTRY(cpu_init_cp15)

#if CONFIG_IS_ENABLED(ARMV7_SET_CORTEX_SMPEN)
    /*
     * The Arm Cortex-A7 TRM says this bit must be enabled before
     * "any cache or TLB maintenance operations are performed".
     */
    mrc p15, 0, r0, c1, c0, 1   @ read auxilary control register
    orr r0, r0, #1 << 6     @ set SMP bit to enable coherency
    mcr p15, 0, r0, c1, c0, 1   @ write auxilary control register
#endif

    /*
     * Invalidate L1 I/D
     */
    mov r0, #0          @ set up for MCR
    mcr p15, 0, r0, c8, c7, 0   @ invalidate TLBs
    mcr p15, 0, r0, c7, c5, 0   @ invalidate icache
    mcr p15, 0, r0, c7, c5, 6   @ invalidate BP array
    mcr     p15, 0, r0, c7, c10, 4  @ DSB
    mcr     p15, 0, r0, c7, c5, 4   @ ISB

    /*
     * disable MMU stuff and caches
     */
    mrc p15, 0, r0, c1, c0, 0
    bic r0, r0, #0x00002000 @ clear bits 13 (--V-)
    bic r0, r0, #0x00000007 @ clear bits 2:0 (-CAM)
    orr r0, r0, #0x00000002 @ set bit 1 (--A-) Align
    orr r0, r0, #0x00000800 @ set bit 11 (Z---) BTB
    ...

cpu_init_cp15函数主要的操作如下:

  • 1.失效 L1 I/D Cache;

  • 2.禁用MMU和缓存。

4.cpu_init_crit函数讲解

cpu_init_crit在文件arch/arm/cpu/armv7/start.S中定义,具体代码如下;

/*************************************************************************
 *
 * CPU_init_critical registers
 *
 * setup important registers
 * setup memory timing
 *
 *************************************************************************/
ENTRY(cpu_init_crit)
    /*
     * Jump to board specific initialization...
     * The Mask ROM will have already initialized
     * basic memory. Go here to bump up clock rate and handle
     * wake up conditions.
     */
    b   lowlevel_init       @ go setup pll,mux,memory
ENDPROC(cpu_init_crit)
#endif

可以看到函数cpu_init_crit内部又只是一句跳转语句,调用了函数lowlevel_init,接下来就是详细的分析一下lowlevel_init和_main这两个函数。

六、lowlevel_init函数详解

lowlevel_init函数,在文件arch/arm/cpu/armv7/lowlevel_init.S中有定义,具体代码如下;

WEAK(lowlevel_init)
    /*
     * Setup a temporary stack. Global data is not available yet.
     */
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
    ldr sp, =CONFIG_SPL_STACK
#else
    ldr sp, =SYS_INIT_SP_ADDR
#endif
    bic sp, sp, #7 /* 8-byte alignment for ABI compliance */
#ifdef CONFIG_SPL_DM
    mov r9, #0
#else
    /*
     * Set up global data for boards that still need it. This will be
     * removed soon.
     */
#ifdef CONFIG_SPL_BUILD
    ldr r9, =gdata
#else
    sub sp, sp, #GD_SIZE
    bic sp, sp, #7
    mov r9, sp
#endif
#endif
    /*
     * Save the old lr(passed in ip) and the current lr to stack
     */
    push    {ip, lr}

    /*
     * Call the very early init function. This should do only the
     * absolute bare minimum to get started. It should not:
     *
     * - set up DRAM
     * - use global_data
     * - clear BSS
     * - try to start a console
     *
     * For boards with SPL this should be empty since SPL can do all of
     * this init in the SPL board_init_f() function which is called
     * immediately after this.
     */
    bl  s_init
    pop {ip, pc}
ENDPROC(lowlevel_init)

lowlevel_init函数主要的操作如下:

  • 1.设置SP指针为CONFIG_SYS_INIT_SP_ADDR

  • 2.对sp指针做8字节对齐处理

  • 3.SP减去#GD_SIZE = 248,GD_SIZE同样在generic-asm-offsets.h 中定了

  • 4.对 sp 指针做8字节对齐处理

  • 5.将SP保存到R9,ip和lr入栈,程序跳转到s_init(对于I.MX6ULL来说,s_init 就是个空函数)

  • 6.函数一路返回,直到_main,s_init函数-->函数lowlevel_ini-->cpu_init_crit-->save_boot_params_ret-->_main。

七、_main函数详解

_main函数在文件 arch/arm/lib/crt0.S中有定义 _main函数执行可以大致分为如下4个部分:

  • 设置初始化C运行环境并调用board_init_f函数

  • 设置新的sp指针和gd指针,设置中间环境位,调用代码重定位

  • 重定位向量表

  • 设置最后的运行环境并调用board_init_r函数

1.设置初始化C运行环境并调用board_init_f函数

代码部分,具体如下;

/*
 * entry point of crt0 sequence
 */

ENTRY(_main)

/* Call arch_very_early_init before initializing C runtime environment. */
#if CONFIG_IS_ENABLED(ARCH_VERY_EARLY_INIT)
    bl  arch_very_early_init
#endif

/*
 * Set up initial C runtime environment and call board_init_f(0).
 */

#if defined(CONFIG_TPL_BUILD) && defined(CONFIG_TPL_NEEDS_SEPARATE_STACK)
    ldr r0, =(CONFIG_TPL_STACK)
#elif defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
    ldr r0, =(CONFIG_SPL_STACK)
#else
    ldr r0, =(SYS_INIT_SP_ADDR)
#endif
    bic r0, r0, #7  /* 8-byte alignment for ABI compliance */
    mov sp, r0
    bl  board_init_f_alloc_reserve
    mov sp, r0
    /* set up gd here, outside any C code */
    mov r9, r0
    bl  board_init_f_init_reserve

#if defined(CONFIG_DEBUG_UART) && CONFIG_IS_ENABLED(SERIAL)
    bl  debug_uart_init
#endif

#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_EARLY_BSS)
    CLEAR_BSS
#endif

    mov r0, #0
    bl  board_init_f
  • 1.设置sp指针为 CONFIG_SYS_INIT_SP_ADDR;

  • 2.对sp指针做8字节对齐处理;

  • 3.读取sp到寄存器r0里面;

  • 4.调用函数board_init_f_alloc_reserve;

  • 5.调用函数board_init_f_init_reserve;

  • 6.调用函数board_init_f。

1.board_init_f_alloc_reserve函数

board_init_f_alloc_reserve函数,在common/init/board_init.c文件中定义,如下;

ulong board_init_f_alloc_reserve(ulong top)
{
    /* Reserve early malloc arena */
#ifndef CONFIG_MALLOC_F_ADDR
#if CONFIG_VAL(SYS_MALLOC_F_LEN)
    top -= CONFIG_VAL(SYS_MALLOC_F_LEN);
#endif
#endif
    /* LAST : reserve GD (rounded up to a multiple of 16 bytes) */
    top = rounddown(top-sizeof(struct global_data), 16);

    return top;
}

board_init_f_alloc_reserve函数的作用是根据传入参数是栈顶地址,计算出预留空间的底部,并将其返回。主要是留出早期的 malloc 内存区域和gd内存区域。如果宏CONFIG_MALLOC_F_ADDR没有被定义,则为malloc预留部分内存空间,大小为CONFIG_SYS_MALLOC_F_LEN;其次为GD变量(global_data结构体类型)预留空间,并且对齐到16个字节的倍数。

2.board_init_f_init_reserve函数

board_init_f_init_reserve函数,在common/init/board_init.c文件中定义,如下;

void board_init_f_init_reserve(ulong base)
{
    struct global_data *gd_ptr;

    /*
     * clear GD entirely and set it up.
     * Use gd_ptr, as gd may not be properly set yet.
     */

    gd_ptr = (struct global_data *)base;
    /* zero the area */
    memset(gd_ptr, '\0', sizeof(*gd));
    /* set GD unless architecture did it already */
#if !defined(CONFIG_ARM)
    arch_setup_gd(gd_ptr);
#endif

    if (CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE))
        board_init_f_init_stack_protection_addr(base);

    /* next alloc will be higher by one GD plus 16-byte alignment */
    base += roundup(sizeof(struct global_data), 16);

    /*
     * record early malloc arena start.
     * Use gd as it is now properly set for all architectures.
     */

#if CONFIG_VAL(SYS_MALLOC_F_LEN)
    /* go down one 'early malloc arena' */
    gd->malloc_base = base;
#endif

    if (CONFIG_IS_ENABLED(SYS_REPORT_STACK_F_USAGE))
        board_init_f_init_stack_protection();
}

board_init_f_init_reserve函数的作用:

初始化gd,其实就是清零处理;设置了gd->malloc_base为gd基地址+gd 大小,并做16字节对齐处理。

2.设置新的sp指针和gd指针,调用重定位代码,调用代码重定位

代码部分,具体如下;

#if ! defined(CONFIG_SPL_BUILD)

/*
 * Set up intermediate environment (new sp and gd) and call
 * relocate_code(addr_moni). Trick here is that we'll return
 * 'here' but relocated.
 */

    ldr r0, [r9, #GD_START_ADDR_SP] /* sp = gd->start_addr_sp */
    bic r0, r0, #7  /* 8-byte alignment for ABI compliance */
    mov sp, r0
    ldr r9, [r9, #GD_NEW_GD]        /* r9 <- gd->new_gd */

    adr lr, here
#if defined(CONFIG_POSITION_INDEPENDENT)
    adr r0, _main
    ldr r1, _start_ofs
    add r0, r1
    ldr r1, =CONFIG_SYS_TEXT_BASE
    sub r1, r0
    add lr, r1
#endif
    ldr r0, [r9, #GD_RELOC_OFF]     /* r0 = gd->reloc_off */
    add lr, lr, r0
#if defined(CONFIG_CPU_V7M)
    orr lr, #1              /* As required by Thumb-only */
#endif
    ldr r0, [r9, #GD_RELOCADDR]     /* r0 = gd->relocaddr */
    b   relocate_code
  • 1.设置新的栈顶指针为sp = gd->start_addr_sp;

  • 2.设置新的gd指针为r9 <- gd->new_gd;

  • 3.设置新r0指针为r0 = gd->reloc_off;

  • 4.设置r0寄存器的值为gd->relocaddr,跳转到代码重定位relocate_code。

3.重定位向量表

代码部分,具体如下;

here:
/*
 * now relocate vectors
 */

    bl  relocate_vectors

代码重定位后返回到here标号处,调用relocate_vectors函数,对中断向量表做重定位。

4.设置最后的运行环境并调用board_init_r函数

代码部分,具体如下;

/* Set up final (full) environment */

    bl  c_runtime_cpu_setup /* we still call old routine here */
#endif
#if !defined(CONFIG_SPL_BUILD) || CONFIG_IS_ENABLED(FRAMEWORK)

#if !defined(CONFIG_SPL_BUILD) || !defined(CONFIG_SPL_EARLY_BSS)
    CLEAR_BSS
#endif

# ifdef CONFIG_SPL_BUILD
    /* Use a DRAM stack for the rest of SPL, if requested */
    bl  spl_relocate_stack_gd
    cmp r0, #0
    movne   sp, r0
    movne   r9, r0
# endif

#if ! defined(CONFIG_SPL_BUILD)
    bl coloured_LED_init
    bl red_led_on
#endif
    /* call board_init_r(gd_t *id, ulong dest_addr) */
    mov     r0, r9                  /* gd_t */
    ldr r1, [r9, #GD_RELOCADDR] /* dest_addr */
    /* call board_init_r */
#if CONFIG_IS_ENABLED(SYS_THUMB_BUILD)
    ldr lr, =board_init_r   /* this is auto-relocated! */
    bx  lr
#else
    ldr pc, =board_init_r   /* this is auto-relocated! */
#endif
    /* we should not return here. */
#endif

ENDPROC(_main)

board_init_r函数主要工作:

  • 1.调用函数c_runtime_cpu_setup,失效I-cache;

  • 2.清除BSS段;

  • 3.设置函数board_init_r的两个参数;

  • 4.调用函数board_init_r。

八、board_init_f 函数详解

board_init_f函数,在common/board_f.c文件定义,具体代码如下;

void board_init_f(ulong boot_flags)
{
    gd->flags = boot_flags;
    gd->have_console = 0;

    if (initcall_run_list(init_sequence_f))
        hang();

#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
        !defined(CONFIG_EFI_APP) && !CONFIG_IS_ENABLED(X86_64) && \
        !defined(CONFIG_ARC)
    /* NOTREACHED - jump_to_copy() does not return */
    hang();
#endif
}

board_init_f函数主要有两个工作:

  • 1.初始化gd的各个成员变量

  • 2.调用函数initcall_run_list,初始化序列init_sequence_f里面的一系列函数,来初始化一系列外设,比如串口、定时器,或者打印一些消息等。

init_sequence_f数组,在common/board_f.c文件中定义,如下,初始化函数表省略其中部分代码;

static const init_fnc_t init_sequence_f[] = {
    setup_mon_len,
    fdtdec_setup,
    trace_early_init,
    initf_malloc,
    log_init,
    initf_bootstage,    /* uses its own timer, so does not need DM */
    event_init,
    bloblist_init,
    setup_spl_handoff,
    console_record_init,
    arch_fsp_init,
    arch_cpu_init,      /* basic arch cpu dependent setup */
    mach_cpu_init,      /* SoC/machine dependent CPU setup */
    initf_dm,
    board_early_init_f,
    get_clocks,     /* get CPU and bus clocks (etc.) */
    timer_init,     /* initialize timer */
    board_postclk_init,
    env_init,       /* initialize environment */
    init_baud_rate,     /* initialze baudrate settings */
    serial_init,        /* serial communications setup */
    console_init_f,     /* stage 1 init of console */
    display_options,    /* say that we are here */
    display_text_info,  /* show debugging info if required */
    checkcpu,
    print_resetinfo,
    print_cpuinfo,      /* display cpu info (and speed) */
    embedded_dtb_select,
    show_board_info,
    INIT_FUNC_WATCHDOG_INIT
    misc_init_f,
    INIT_FUNC_WATCHDOG_RESET
    init_func_i2c,
    init_func_vid,
    announce_dram_init,
    dram_init,      /* configure available RAM banks */
    post_init_f,
    INIT_FUNC_WATCHDOG_RESET
    testdram,
    INIT_FUNC_WATCHDOG_RESET
    init_post,
    INIT_FUNC_WATCHDOG_RESET
    setup_dest_addr,
    fix_fdt,
    reserve_pram,
    ...
#if !defined(CONFIG_ARM) && !defined(CONFIG_SANDBOX) && \
        !CONFIG_IS_ENABLED(X86_64)
    jump_to_copy,
#endif
    NULL,
};

其中比较重要的一些初始化函数如下:

  • 1.setup_mon_len函数:设置gd的mon_len成员变量,也就是整个代码的长度;

  • 2.initf_malloc函数:设置gd中和malloc有关的成员变量;

  • 3.board_early_init_f函数:用来初始化串口的IO配置,在board/freescale/mx6ull_toto/mx6ull_toto.c文件中定义;

  • 4.timer_init函数:初始化内核定时器,为uboot提供时钟节拍,在arch/arm/imx-common/timer.c文件中定义;

  • 5.get_clocks函数:获取了SD卡外设的时钟(sdhc_clk),在arch/arm/imx-common/speed.c文件中定义;

  • 6.init_baud_rate函数:初始化波特率,在common/board_f.c文件中定义;

  • 7.serial_init函数:初始化串口通信设置,在drivers/serial/serial.c文件中定义;

  • 8.console_init_f函数:初始化控制台,在common/console.c文件中定义:

  • 9.display_options函数:打印uboot版本信息和编译信息,在lib/display_options.c文件中定义;

  • 10.print_cpuinfo函数:用来显示CPU信息和主频,在arch/arm/imx-common/cpu.c文件中定义;

  • 11.show_board_info函数:打印开发板信息,在common/board_info.c文件中定义;

  • 12.init_func_i2c函数:用于初始化I2C;

  • 13.announce_dram_init函数:此函数很简单,就是输出字符串“DRAM:”;

  • 14.dram_init函数:并非真正的初始化DDR,只是设置gd->ram_size的值。

九、relocate_code函数详解

relocate_code函数,在arch/arm/lib/relocate.S文件定义,具体代码如下;

/*
 * void relocate_code(addr_moni)
 *
 * This function relocates the monitor code.
 *
 * NOTE:
 * To prevent the code below from containing references with an R_ARM_ABS32
 * relocation record type, we never refer to linker-defined symbols directly.
 * Instead, we declare literals which contain their relative location with
 * respect to relocate_code, and at run time, add relocate_code back to them.
 */

ENTRY(relocate_code)
relocate_base:
    adr r3, relocate_base
    ldr r1, _image_copy_start_ofs
    add r1, r3          /* r1 <- Run &__image_copy_start */
    subs    r4, r0, r1      /* r4 <- Run to copy offset      */
    beq relocate_done       /* skip relocation               */
    ldr r1, _image_copy_start_ofs
    add r1, r3          /* r1 <- Run &__image_copy_start */
    ldr r2, _image_copy_end_ofs
    add r2, r3          /* r2 <- Run &__image_copy_end   */
copy_loop:
    ldmia   r1!, {r10-r11}      /* copy from source address [r1] */
    stmia   r0!, {r10-r11}      /* copy to   target address [r0] */
    cmp r1, r2          /* until source end address [r2] */
    blo copy_loop

    /*
     * fix .rel.dyn relocations
     */
    ldr r1, _rel_dyn_start_ofs
    add r2, r1, r3      /* r2 <- Run &__rel_dyn_start */
    ldr r1, _rel_dyn_end_ofs
    add r3, r1, r3      /* r3 <- Run &__rel_dyn_end */
fixloop:
    ldmia   r2!, {r0-r1}        /* (r0,r1) <- (SRC location,fixup) */
    and r1, r1, #0xff
    cmp r1, #R_ARM_RELATIVE
    bne fixnext

    /* relative fix: increase location by offset */
    add r0, r0, r4
    ldr r1, [r0]
    add r1, r1, r4
    str r1, [r0]
fixnext:
    cmp r2, r3
    blo fixloop

relocate_done:

#ifdef __XSCALE__
    /*
     * On xscale, icache must be invalidated and write buffers drained,
     * even with cache disabled - 4.2.7 of xscale core developer's manual
     */
    mcr p15, 0, r0, c7, c7, 0   /* invalidate icache */
    mcr p15, 0, r0, c7, c10, 4  /* drain write buffer */
#endif

    /* ARMv4- don't know bx lr but the assembler fails to see that */

#ifdef __ARM_ARCH_4__
    mov pc, lr
#else
    bx  lr
#endif

ENDPROC(relocate_code)

relocate_code此函数作用:

 完成镜像拷贝和重定位,镜像地址从__image_copy_start开始,到__image_copy_end结束,拷贝的目标地址由参数传进来,也就是r0寄存器的值。重定位的原理此处不展开,需要了解的自行去学习。

十、relocate_vectors函数详解

relocate_vectors函数,在arch/arm/lib/relocate.S文件定义,具体代码如下;

ENTRY(relocate_vectors)

#ifdef CONFIG_CPU_V7M
    /*
     * On ARMv7-M we only have to write the new vector address
     * to VTOR register.
     */
    ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
    ldr r1, =V7M_SCB_BASE
    str r0, [r1, V7M_SCB_VTOR]
#else
#ifdef CONFIG_HAS_VBAR
    /*
     * If the ARM processor has the security extensions,
     * use VBAR to relocate the exception vectors.
     */
    ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
    mcr     p15, 0, r0, c12, c0, 0  /* Set VBAR */
#else
    /*
     * Copy the relocated exception vectors to the
     * correct address
     * CP15 c1 V bit gives us the location of the vectors:
     * 0x00000000 or 0xFFFF0000.
     */
    ldr r0, [r9, #GD_RELOCADDR] /* r0 = gd->relocaddr */
    mrc p15, 0, r2, c1, c0, 0   /* V bit (bit[13]) in CP15 c1 */
    ands    r2, r2, #(1 << 13)
    ldreq   r1, =0x00000000     /* If V=0 */
    ldrne   r1, =0xFFFF0000     /* If V=1 */
    ldmia   r0!, {r2-r8,r10}
    stmia   r1!, {r2-r8,r10}
    ldmia   r0!, {r2-r8,r10}
    stmia   r1!, {r2-r8,r10}
#endif
#endif
    bx  lr

ENDPROC(relocate_vectors)

relocate_vectors函数作用:

用于重定位向量表,只有一步操作比较重要,就是将uboot重定位完之后的地址,装载到CP15的VBAR寄存器中设置向量表偏移,该寄存器自行去学习。

十一、board_init_r函数详解

board_init_r函数,在common/board_r.c文件定义,具体代码如下;

void board_init_r(gd_t *new_gd, ulong dest_addr)
{
    /*
     * Set up the new global data pointer. So far only x86 does this
     * here.
     * TODO(sjg@chromium.org): Consider doing this for all archs, or
     * dropping the new_gd parameter.
     */
    if (CONFIG_IS_ENABLED(X86_64) && !IS_ENABLED(CONFIG_EFI_APP))
        arch_setup_gd(new_gd);

#if !defined(CONFIG_X86) && !defined(CONFIG_ARM) && !defined(CONFIG_ARM64)
    gd = new_gd;
#endif
    gd->flags &= ~GD_FLG_LOG_READY;

    if (IS_ENABLED(CONFIG_NEEDS_MANUAL_RELOC)) {
        for (int i = 0; i < ARRAY_SIZE(init_sequence_r); i++)
            MANUAL_RELOC(init_sequence_r[i]);
    }

    if (initcall_run_list(init_sequence_r))
        hang();

    /* NOTREACHED - run_main_loop() does not return */
    hang();
}

board_init_f函数中,会初始化一些外设和gd的成员变量,但并没有初始化所有的外设,还需要一些后续工作,这些工作就是由board_init_r函数完成的,调用initcall_run_list函数执行初始化序列init_sequence_r。

init_sequence_r是一个函数表,也定义在该文件中,部分代码如下;

static init_fnc_t init_sequence_r[] = {
    initr_trace,
    initr_reloc,
    event_init,
    initr_caches,
    initr_reloc_global_data,
    initr_barrier,
    initr_malloc,
    log_init,
    initr_bootstage,
    console_record_init,
    initr_of_live,
    board_init, /* Setup chipselects */
    stdio_init_tables,
    serial_initialize,
    initr_announce,
    INIT_FUNC_WATCHDOG_RESET
    INIT_FUNC_WATCHDOG_RESET
    power_init_board,
    initr_flash,
    initr_nand,
    initr_mmc,
    initr_env,
    INIT_FUNC_WATCHDOG_RESET
    cpu_secondary_init_r,
    INIT_FUNC_WATCHDOG_RESET
    stdio_add_devices,
    jumptable_init,
    console_init_r,     /* fully init console as a device */
    interrupt_init,
    board_late_init,
    INIT_FUNC_WATCHDOG_RESET
    initr_net,
    run_main_loop,
};

其中比较重要的一些初始化函数如下:

  • 1.initr_caches函数:初始化cache,使能cache;

  • 2.board_init函数:FEC初始化,在board/freescale/mx6ull_toto/mx6ull_toto.c文件中定义;

  • 3.initr_mmc函数:初始化emmc,在common/board_r.c文件中定义;

  • 4.iinitr_env函数:初始化环境变量;

  • 5.console_init_r函数:初始化控制台,在common/console.c文件中定义;

  • 6.interrupt_init函数和initr_enable_interrupts函数:初始化中断并使能中断;在arch/arm/lib/interrupts.c文件中定义;

  • 7.initr_ethaddr函数:初始化网络地址,获取MAC地址,读取环境变量ethaddr的值;

  • 8.initr_net函数:初始化网络设备,函 数 调 用 顺 序 为 :initr_net->eth_initialize->board_eth_init(),在common/board_r.c文件中定义;

  • 9.run_main_loop函数:主循环,处理命令。

十二、run_main_loop函数详解

run_main_loop函数,在common/board_r.c文件定义,具体代码如下;

static int run_main_loop(void)
{
#ifdef CONFIG_SANDBOX
    sandbox_main_loop_init();
#endif
    /* main_loop() can return to retry autoboot, if so just run it again */
    for (;;)
        main_loop();
    return 0;
}

uboot启动以后会进入3秒倒计时,如果在3秒倒计时结束之前按下按下回车键,那么就会进入uboot的命令模式,如果倒计时结束以后都没有按下回车键,那么就会自动启动Linux内核,这个功能就是由run_main_loop函数来完成的。

main_loop函数,在common/main.c文件中定义,具体代码如下;

/* We come here after U-Boot is initialised and ready to process commands */
void main_loop(void)
{
    const char *s;

    bootstage_mark_name(BOOTSTAGE_ID_MAIN_LOOP, "main_loop");

    if (IS_ENABLED(CONFIG_VERSION_VARIABLE))
        env_set("ver", version_string);  /* set version variable */

    cli_init();

    if (IS_ENABLED(CONFIG_USE_PREBOOT))
        run_preboot_environment_command();

    if (IS_ENABLED(CONFIG_UPDATE_TFTP))
        update_tftp(0UL, NULL, NULL);

    if (IS_ENABLED(CONFIG_EFI_CAPSULE_ON_DISK_EARLY)) {
        /* efi_init_early() already called */
        if (efi_init_obj_list() == EFI_SUCCESS)
            efi_launch_capsules();
    }

    s = bootdelay_process();
    if (cli_process_fdt(&s))
        cli_secure_boot_cmd(s);

    autoboot_command(s);

    cli_loop();
    panic("No CLI available");
}

main_loop函数主要工作:

  • 1.调用bootstage_mark_name函数,打印出启动进度

  • 2.如果宏CONFIG_VERSION_VARIABLE定义了就会执行函数setenv,设置换将变量ver的值为version_string,也就是设置版本号环境变量;

  • 3.调用cli_init函数,初始化hushshell相关的变量

  • 4.调用bootdelay_process函数,此函数会读取环境变量bootdelay和bootcmd的内容,然后将bootdelay的值赋值给全局变量stored_bootdelay,返回值为环境变量bootcmd的值。

  • 5.autoboot_command函数,此函数就是检查倒计时是否结束?倒计时结束之前有没有被打断?

    autoboot_command函数,在文件common/autoboot.c文件中定义,具体代码如下;

void autoboot_command(const char *s)
{
    debug("### main_loop: bootcmd=\"%s\"\n", s ? s : "<UNDEFINED>");

    if (s && (stored_bootdelay == -2 ||
         (stored_bootdelay != -1 && !abortboot(stored_bootdelay)))) {
        bool lock;
        int prev;

        lock = autoboot_keyed() &&
            !IS_ENABLED(CONFIG_AUTOBOOT_KEYED_CTRLC);
        if (lock)
            prev = disable_ctrlc(1); /* disable Ctrl-C checking */

        run_command_list(s, -1, 0);

        if (lock)
            disable_ctrlc(prev);    /* restore Ctrl-C checking */
    }

    if (IS_ENABLED(CONFIG_AUTOBOOT_USE_MENUKEY) &&
        menukey == AUTOBOOT_MENUKEY) {
        s = env_get("menucmd");
        if (s)
            run_command_list(s, -1, 0);
    }
}

abortboot函数,在文件common/autoboot.c文件中定义,具体代码如下;

static int abortboot(int bootdelay)
{
    int abort = 0;

    if (bootdelay >= 0) {
        if (autoboot_keyed())
            abort = abortboot_key_sequence(bootdelay);
        else
            abort = abortboot_single_key(bootdelay);
    }

    if (IS_ENABLED(CONFIG_SILENT_CONSOLE) && abort)
        gd->flags &= ~GD_FLG_SILENT;

    return abort;
}

在倒计时结束之前有按键按下则执行函数 abortboot_single_key,abortboot_single_key函数在common/autoboot.c文件中定义,具体代码如下;

static int abortboot_single_key(int bootdelay)
{
    int abort = 0;
    unsigned long ts;

    printf("Hit any key to stop autoboot: %2d ", bootdelay);

    /*
     * Check if key already pressed
     */
    if (tstc()) {   /* we got a key press   */
        getchar();  /* consume input    */
        puts("\b\b\b 0");
        abort = 1;  /* don't auto boot  */
    }

    while ((bootdelay > 0) && (!abort)) {
        --bootdelay;
        /* delay 1000 ms */
        ts = get_timer(0);
        do {
            if (tstc()) {   /* we got a key press   */
                int key;

                abort  = 1; /* don't auto boot  */
                bootdelay = 0;  /* no more delay    */
                key = getchar();/* consume input    */
                if (IS_ENABLED(CONFIG_AUTOBOOT_USE_MENUKEY))
                    menukey = key;
                break;
            }
            udelay(10000);
        } while (!abort && get_timer(ts) < 1000);

        printf("\b\b\b%2d ", bootdelay);
    }

    putc('\n');

    return abort;
}

abortboot_single_key函数主要工作:

  • 1.倒计时的具体实现;

  • 2.判断键盘是否有按下,也就是是否打断了倒计时,如果键盘按下的话就执行相应的分支。比如设置abort为 1,设置 bootdelay为0等,最后跳出倒计时循环;

  • 3.返回abort的值,如果倒计时自然结束,没有被打断abort就为0,否则的话abort的值就为 1;

  • 4.在autoboot_command函数中,如果倒计时自然结束那么就执行函数run_command_list,此函数会执行参数s指定的一系列命令,也就是环境变量bootcmd的命令,bootcmd里面保存着默认的启动命令,因此linux内核启动!

十三、u-boot启动函数调用流程框图

上面给大家详细的讲解了各个函数的作用,以及调用关系。现在给大家总结一下,以流程框图的形式,展示u-boot启动流程;

图片

    今天的内容到这就结束了,感谢大家的收看!​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/102399.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

《Kubernetes部署篇:Ubuntu20.04基于containerd部署kubernetes1.24.17集群(多主多从)》

一、架构图 如下图所示: 二、环境信息 1、部署规划主机名K8S版本系统版本内核版本IP地址备注k8s-master-631.24.17Ubuntu 20.04.5 LTS5.15.0-69-generic192.168.1.63master节点 + etcd节点k8s-master-641.24.17Ubuntu 20.04.5 LTS5.15.0-69-generic192.168.1.64master节点 + …

Python语音识别处理详解

概要 人们对智能语音助手的需求不断提高&#xff0c;语音识别技术也随之迅速发展。在这篇文章中&#xff0c;我们将介绍如何使用Python的SpeechRecognition和pydub等库来实现语音识别和处理&#xff0c;从而打造属于自己的智能语音助手。 1. 什么是语音识别&#xff1f; 语音…

一文速学-让神经网络不再神秘,一天速学神经网络基础(五)-最优化

前言 思索了很久到底要不要出深度学习内容&#xff0c;毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新&#xff0c;很多坑都没有填满&#xff0c;而且现在深度学习的文章和学习课程都十分的多&#xff0c;我考虑了很久决定还是得出神经网络系列文章&#xff0c;…

打车系统网约车系统开发支持APP公众号H5小程序版本源码

一、操作流程 二、业务模式 三、用户端 用户注册登录&#xff1a;未注册的手机号将自动创建账号 通过好友的邀请链接进行注册&#xff0c;将会绑定上下级关系 也可以注册的时候输入好友的邀请码&#xff0c;也可以绑定关系 用户充值&#xff1a; 用户下单支付时&#xff0c;可以…

python技术面试题合集(二)

python技术面试题 1、简述django FBV和CBV FBV是基于函数编程&#xff0c;CBV是基于类编程&#xff0c;本质上也是FBV编程&#xff0c;在Djanog中使用CBV&#xff0c;则需要继承View类&#xff0c;在路由中指定as_view函数&#xff0c;返回的还是一个函数 在DRF中的使用的就是…

开开心心带你学习MySQL数据库之第三篇上

学校的项目组有必要加入吗? 看你的初心. ~~如果初心是通过这个经历能够提高自己的技术水平 ~~是可以考虑的 ~~如果初心是通过这个经历提高自己找工作的概率 ~~这个是不靠谱的,啥用没有 ~~如果初心是通过这个体验更美好的大学生活 ~~靠谱的 秋招,应届生,找工作是非常容易的!!! …

【Android】SDK安装及配置

一、下载SDK Tools https://www.androiddevtools.cn 以windows10系统为例&#xff0c;下载压缩版直接解压即可。 二、安装SDK Tools 解压后双击运行SDK Manager.exe 一般根据默认推荐安装即可。 如果无法打开SDK Manager&#xff0c;可以参考&#xff1a;https://blog.cs…

[笔记] 阿里云域名知识

文章目录 前言一、域名二、域名常见分类2.1 泛域名2.2 为什么要设置子域名 三、记录类型3.1 A- 将域名指向一个PV4地址3.2 CNAME- 将域名指向另外一个域名3.3 AAAA- 将域名指向一个PV6地址3.4 MX- 将域名指向邮件服务器地址3.5 SRV- 记录提供特定的服务的服务器使用场景 3.6 TX…

Docker进阶:mysql 主从复制、redis集群3主3从【扩缩容案例】

Docker进阶&#xff1a;mysql 主从复制、redis集群3主3从【扩缩容案例】 一、Docker常规软件安装1.1 docker 安装 tomcat&#xff08;默认最新版&#xff09;1.2 docker 指定安装 tomcat8.01.3 docker 安装 mysql 5.7&#xff08;数据卷配置&#xff09;1.4 演示--删除mysql容器…

eureka服务注册和服务发现

文章目录 问题实现以orderservice为例orderservice服务注册orderservice服务拉取 总结 问题 我们要在orderservice中根据查询到的userId来查询user&#xff0c;将user信息封装到查询到的order中。 一个微服务&#xff0c;既可以是服务提供者&#xff0c;又可以是服务消费者&a…

Python零基础超详细教程:字典(Dictionary)相关介绍使用

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! Python字典是另一种可变容器模型&#xff0c; 且可存储任意类型对象&#xff0c;如字符串、数字、元组等其他容器模型。 python更多源码/资料/解答/教程等 点击此处跳转文末名片免费获取 一、创建字典 字典由键和对应值…

LNMP架构:搭建Discuz论坛

文章目录 1. 编译安装Nginx1.1 前置准备1.2 编译安装1.3 添加nginx系统服务 2.编译安装MySql2.1 前置准备2.2 编译安装2.3 修改mysql 配置文件2.4 设置路径环境变量2.5 初始化数据库2.6 添加musql系统服务2.7 修改MySql登录密码 3. 编译安装PHP3.1 前置准备3.2 编译安装3.3 复制…

IDEA打开一个项目时,idea左侧project模式下,不显示项目工程目录的解决方法

在IDEA打开一个一个已有的项目chapter3时&#xff0c;idea左侧project模式下&#xff0c;左侧也没有project按钮&#xff0c;如下问题截图&#xff1a;&#xff08;ps:项目结构可以显示&#xff0c;但是src等目录不见&#xff09; 在网上查了一些方法&#xff1a; 1、解决办法…

QT 界面相关操作

1> 创建自定义类时需要指定父类 2> 第一个界面的相关操作 #include "widget.h" #include<iostream> //printf #include<QDebug> //qDebuf #include<QIcon> //图标的头文件 using namespace std; //coutWidget::Widget(QWidget *…

外观模式:简化复杂子系统的访问与使用

文章目录 1. 简介2. 外观模式的基本结构3. 外观模式的实现步骤4. 外观模式的应用与实例4.1 图形界面库的外观模式应用4.2 文件压缩与解压缩的外观模式应用4.3 订单处理系统的外观模式应用 5. 外观模式的优缺点5.1 优点5.2 缺点 6. 总结 1. 简介 外观模式是一种结构型设计模式&…

微服务通信[HTTP|RPC同步通信、MQ异步通信]

概念 A服务调用B服务,B服务调C服务,C服务调D服务,即微服务之间的通信(也可以叫微服务之间的调用) HTTP同步通信 一种轻量级的通信协议,常用于在不同的微服务之间进行通信,也是最简单的通信方式使用REST ful为开发规范&#xff0c;将服务对外暴露的HTTP调用方式为REST API(如GET…

Python 没有 pip 包问题解决

最近需要搞一个干净的Python,从官网上直接下载解压可用的绿色版&#xff0c;发现无法正常使用PiP 一 官网下载Python https://www.python.org/downloads/ 选择 embeddable package,这种是免安装的包&#xff0c;解压后可以直接使用。 二 配置环境变量 添加环境变量&#xff1a…

肖sir__linux详解__001

linux详解: 1、ifconfig 查看ip地址 2、6版本&#xff1a;防火墙的命令&#xff1a; service iptables status 查看防火墙状态 service iptables statrt 开启防火墙 service iptables stop 关闭防火墙 service iptables restart 重启防火墙状态 7版本&#xff1a; systemctl s…

【leetcode 力扣刷题】数学题之计算次幂//次方:快速幂

利用乘法求解次幂问题—快速幂 50. Pow(x, n)372. 超级次方 50. Pow(x, n) 题目链接&#xff1a;50. Pow(x, n) 题目内容&#xff1a; 题目就是要求我们去实现计算x的n次方的功能函数&#xff0c;类似c的power()函数。但是我们不能使用power()函数直接得到答案&#xff0c;那…

纵行科技与山鹰绿能达成合作,提供物联网资产管理数据服务

近日&#xff0c;纵行科技与山鹰绿能宣布双方达成深度合作关系&#xff0c;纵行科技将为山鹰绿能提供专业的物联网技术服务&#xff0c;使用物联网技术帮助山鹰绿能对循环包装载具等资产进行在线管理和数字化运营。 据悉&#xff0c;山鹰绿能是一家由山鹰国际控股的全资子公司…