WGCNA分析教程 | 代码四

写在前面

WGCNA的教程,我们在前期的推文中已经退出好久了。今天在结合前期的教程的进行优化一下。只是在现有的教程基础上,进行修改。其他的其他并无改变。

前期WGCNA教程

  • WGCNA分析 | 全流程分析代码 | 代码一

  • WGCNA分析 | 全流程分析代码 | 代码二

  • WGCNA分析 | 全流程代码分享 | 代码三

本次教程的优化点

注意:本次教程在教程二的基础上修改。

  1. 教程代码更规范
  2. 教程添加了过滤数值流程
  3. 教程添加merge模块后图形绘制(注:在教程二的基础上)
  4. 教程添加更多的注释信息
  5. 教程后期添加视频讲解

WGCNA教程 | 代码四


本期教程输出所有的文件信息。

设置文件位置及导入包

##'@加权基因共表达分析(WGCNA)
##'@2023.09.02
##'@整理者:小杜的生信笔记
##'@前期教程网址:https://mp.weixin.qq.com/s/Ln9TP74nzWhtvt7obaMp1A
##'
##'@本教程主要主要是为了优化前期代码,在前期的基础上进行修改。
##'@若您的数据量较大,我们建议WGCNA在服务器上跑。
##'

##==============================================================================

setwd("E:\\小杜的生信筆記\\2023\\20230217_WGCNA\\WGCNA_04")
rm(list = ls())
#install.packages("WGCNA")
#BiocManager::install('WGCNA')
library(WGCNA)
options(stringsAsFactors = FALSE)
#enableWGCNAThreads(60) ## 打开多线程
#Read in the female liver data set

导入数据

我们这里给出了两种不同文件的导入方式,txtcsv

#'@导入数据
#'@导入txt格式数据
# WGCNA.fpkm = read.table("ExpData_WGCNA.txt",header=T,
#                         comment.char = "",
#                         check.names=F)
##'@导入csv文件格式
WGCNA.fpkm = read.csv("ExpData_WGCNA.csv", header = T, check.names = F)
WGCNA.fpkm[1:10,1:10]

检查数据缺失值

gsg = goodSamplesGenes(datExpr0, verbose = 3)
gsg$allOK
if (!gsg$allOK)
{
  if (sum(!gsg$goodGenes)>0)
    printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", ")))
  if (sum(!gsg$goodSamples)>0)
    printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", ")))
  # Remove the offending genes and samples from the data:
  datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes]
}

过滤数值 [optional]

@过滤数值(optional),此步根据你自己的数据进行过滤数值,过滤的数值大小根据自己需求修改

meanFPKM=0.5  ###--过滤标准,可以修改
n=nrow(datExpr0)
datExpr0[n+1,]=apply(datExpr0[c(1:nrow(datExpr0)),],2,mean)
datExpr0=datExpr0[1:n,datExpr0[n+1,] > meanFPKM]
# for meanFpkm in row n+1 and it must be above what you set--select meanFpkm>opt$meanFpkm(by rp)
filtered_fpkm=t(datExpr0)
filtered_fpkm=data.frame(rownames(filtered_fpkm),filtered_fpkm)
names(filtered_fpkm)[1]="sample"
head(filtered_fpkm)
###'@输出过滤的文件
write.table(filtered_fpkm, file="WGCNA.filter.txt",
            row.names=F, col.names=T,quote=FALSE,sep="\t")

样本聚类

###'@样本聚类
sampleTree = hclust(dist(datExpr0), method = "average")
pdf("1_sample clutering.pdf", width = 6, height = 4)
par(cex = 0.7);
par(mar = c(0,4,2,0))
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5,
     cex.axis = 1.5, cex.main = 2)
dev.off()


样本sample05与整体数据差异较大,过滤此数据。

过滤样本

pdf("2_sample clutering_delete_outliers.pdf", width = 6, height = 4)
plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5, 
     cex.axis = 1.5, cex.main = 2) +
  abline(h = 1500, col = "red")    ###'@"h = 1500"参数为你需要过滤的参数高度
dev.off()

##'@过滤离散样本
##'@"cutHeight"为过滤参数,与上述图保持一致
clust = cutreeStatic(sampleTree, cutHeight = 1500, minSize = 10)
keepSamples = (clust==1)
datExpr = datExpr0[keepSamples, ]
nGenes = ncol(datExpr)
nSamples = nrow(datExpr)


两个样本直接数据比较


载入性状数据

##'@导入csv格式
traitData = read.csv("TraitData.csv",row.names=1)
# ##'@导入txt格式
# traitData = read.table("TraitData.txt",row.names=1,header=T,comment.char = "",check.names=F)
head(traitData)
allTraits = traitData
dim(allTraits)
names(allTraits)
# 形成一个类似于表达数据的数据框架
fpkmSamples = rownames(datExpr)
traitSamples =rownames(allTraits)
traitRows = match(fpkmSamples, traitSamples)
datTraits = allTraits[traitRows,]
rownames(datTraits)
collectGarbage()

Re-cluster samples

# Re-cluster samples
sampleTree2 = hclust(dist(datExpr), method = "average")
# 
traitColors = numbers2colors(datTraits, signed = FALSE)
# Plot the sample dendrogram and the colors underneath.

Sample dendrogram and trait heatmap

#sizeGrWindow(12,12)
pdf(file="3_Sample_dendrogram_and_trait_heatmap.pdf",width=8 ,height= 6)
plotDendroAndColors(sampleTree2, traitColors,
                    groupLabels = names(datTraits),
                    main = "Sample dendrogram and trait heatmap",cex.colorLabels = 1.5, cex.dendroLabels = 1, cex.rowText = 2)
dev.off()


数据处理结束,继续后续网络构建分析!


#'@打开多线程分析
enableWGCNAThreads(5)

获得最佳阈值(softpower)

#'@获得soft阈值
#powers = c(1:30)
powers = c(c(1:10), seq(from = 12, to=30, by=2))
#'@调用网络拓扑分析功能
sft = pickSoftThreshold(datExpr, powerVector = powers, verbose = 5)

绘制softpower图形

#'@绘制soft power plot 
pdf(file="4_软阈值选择.pdf",width=12, height = 8)
par(mfrow = c(1,2))
cex1 = 0.85
# Scale-free topology fit index as a function of the soft-thresholding power
plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n",
     main = paste("Scale independence"));
text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2],
     labels=powers,cex=cex1,col="red");
# this line corresponds to using an R^2 cut-off of h
abline(h=0.8,col="red")
# Mean connectivity as a function of the soft-thresholding power
plot(sft$fitIndices[,1], sft$fitIndices[,5],
     xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
     main = paste("Mean connectivity"))
text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red")
dev.off()

详细教程请看:WGCNA分析教程 | 代码四





merge后的图形【我们最终获得图形】


输出模块与基因相关性散点图


输出MM和GS数据

Network heatmap plot



小杜的生信筆記,主要发表或收录生物信息学的教程,以及基于R的分析和可视化(包括数据分析,图形绘制等);分享感兴趣的文献和学习资料!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/101958.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自然语言处理(二):近似训练

近似训练 近似训练(Approximate Training)是指在机器学习中使用近似的方法来训练模型,以降低计算复杂度或提高训练效率。这种方法通常用于处理大规模数据集或复杂模型,其中精确的训练算法可能过于耗时或计算资源不足。 近似训练…

自定义创建项目

基于VueCli自定义创建项目 1.Eslint代码规范 代码规范:一套写代码的约定规则。 比如 赋值符号的左右是否需要空格 一句话结束是否要加; 正规的团队 需要统一的编码风格 https://standardjs.com/rules-zhcn.html 规则查找 https://zh-hans.eslint.org/docs/late…

mysql:[Some non-transactional changed tables couldn‘t be rolled back]不支持事务

1. mysql创建表时默认引擎MyIsam,因此不支持事务的操作; 2. 修改mysql的默认引擎,可以使用show engine命令查看支持的引擎: 【my.conf详情说明】my.cnf配置文件注释详解_xiaolin01999的博客-CSDN博客 3. 原来使用MyIsam创建的表…

微信小程序开发教学系列(12)- 实战项目案例

十二、实战项目案例 本章将通过一个简单的实战项目案例来帮助读者巩固之前学习到的知识。我们将搭建一个名为“ToDoList”的微信小程序,实现一个简单的任务清单功能。 项目介绍 ToDoList是一个用于记录和管理任务的小程序。用户可以添加、编辑、完成和删除任务&a…

springboot web开发springmvc自动配置原理

前言 我们也知道springboot启用springmvc基本不用做什么配置可以很方便就使用了但是不了解原理,开发过程中遇到点问题估计就比较头疼,不管了解的深不深入,先巴拉一番再说… 下面我们先看看官网…我的版本是2.3.2版本,发现官网改动也比较大…不同版本自己巴拉下吧,结构虽然变化…

Lesson4-2:OpenCV图像特征提取与描述---Harris和Shi-Tomas算法

学习目标 理解Harris和Shi-Tomasi算法的原理能够利用Harris和Shi-Tomasi进行角点检测 1 Harris角点检测 1.1 原理 H a r r i s Harris Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化&#xff…

java实现粤语歌曲0243填词法

粤语歌曲填词法 一、前言 转化成数字歌。对每个音符,提供配合广东话声调的字,选出成为歌词。可以在网上创作,或下载到自己电脑中使用。 简谱 3656536,歌词 落花满天蔽月光。 唱起来配合乐曲音调。这叫做‘叶韵’,又叫…

UE4 植物生长

这个可以改变SplineMesh朝向

android 输入法demo

背景: 一个简单的android输入法demo,支持输入png、gif,jpeg、webp等格式。 此示例演示如何编写一个应用程序,该应用程序接受使用 Commit Content API 从键盘发送的丰富内容(例如图像)。 用户通常希望通过表…

推荐一本AI+医疗书:《机器学习和深度学习基础以及医学应用》,附21篇精选综述

当代医学仍然存在许多亟待解决的问题,比如日益增加的成本、医疗服务水平的下降...但近几年AI技术的发展却给医疗领域带来了革命性的变化,因此AI医疗迅速兴起。 从目前已知的成果来看,人工智能在医学领域的应用已经相当广泛,智能诊…

AJAX学习笔记1发送Get请求

传统请求有哪些方式,及缺点 传统请求有哪些? 1.直接在浏览器地址栏上输入URL. 2.点击超连接. <a href"/上下文/请求地址">超链接请求</a> ---->相对路径 <a href"http://www.baidu.com">超链接请求</a> ---->绝对路…

【Python】PySpark

前言 Apache Spark是用于大规模数据&#xff08;large-scala data&#xff09;处理的统一&#xff08;unified&#xff09;分析引擎。 简单来说&#xff0c;Spark是一款分布式的计算框架&#xff0c;用于调度成百上千的服务器集群&#xff0c;计算TB、PB乃至EB级别的海量数据…

知识图谱实战应用26-基于知识图谱构建《本草纲目》的中药查询与推荐项目应用

大家好,我是微学AI,今天给大家介绍一下知识图谱实战应用26-基于知识图谱构建《本草纲目》的中药查询与推荐项目应用,本文通过Py2neo连接到知识图谱数据库,系统实现了中药的快速查询、关系分析、智能推荐和知识展示等功能。用户可以输入中药的名称或特征进行查询,系统将从知…

分页功能实现

大家好 , 我是苏麟 , 今天聊一聊分页功能 . Page分页构造器是mybatisplus包中的一个分页类 . Page分页 引入依赖 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.1</ver…

【LeetCode每日一题】——274.H指数

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 排序 二【题目难度】 中等 三【题目编号】 274.H指数 四【题目描述】 给你一个整数数组 ci…

linux系统中串口驱动框架基本分析(经典)

第一&#xff1a;区分不同的终端类型 串行端口终端&#xff08;/dev/ttySn&#xff09; 串行端口终端&#xff08;Serial Port Terminal&#xff09;是使用计算机串行端口连接的终端设备。计算机把每个串行端口都看作是一个字符设备。 有段时间这些串行端口设备通常被称为终…

Python:列表推导式

相关阅读 Python专栏https://blog.csdn.net/weixin_45791458/category_12403403.html?spm1001.2014.3001.5482 列表推导式使得创建特定列表的方式更简洁。常见的用法为&#xff0c;对序列或可迭代对象中的每个元素应用某种操作&#xff0c;用生成的结果创建新的列表&#xff…

Python—匹配字段

1. 「概述」 在日常开发中&#xff0c;经常需要对数据中的某些字段进行匹配&#xff0c;但这些字段可能存在微小的差异。例如&#xff0c;同一个招聘岗位的数据中&#xff0c;省份字段可能有“广西”、“广西壮族自治区”和“广西省”等不同的写法。为了处理这些情况&#xff…

(数字图像处理MATLAB+Python)第十章图像分割-第四,五节:分水岭分割和综合案例

文章目录 一&#xff1a;分水岭分割&#xff08;1&#xff09;原理&#xff08;2&#xff09;程序 二&#xff1a;综合案例&#xff1a;答题卡图像分割&#xff08;1&#xff09;设计思路&#xff08;2&#xff09;各模块设计&#xff08;3&#xff09;代码 一&#xff1a;分水…

three.js(二):webpack + three.js + ts

用webpackts 开发 three.js 项目 webpack 依旧是主流的模块打包工具;ts和three.js 是绝配&#xff0c;three.js本身就是用ts写的&#xff0c;ts可以为three 项目提前做好规则约束&#xff0c;使项目的开发更加顺畅。 1.创建一个目录&#xff0c;初始化 npm mkdir demo cd de…