深度学习环境配置超详细教程【Anaconda+PyTorch(GPU版)+CUDA+cuDNN】

深度学习环境配置

入门深度学习,首先要做的事情就是要搭建深度学习的环境。不管你是Windows用户,Mac用户还是Ubuntu用户,只要电脑配置允许,都可以做深度学习,毕竟Windows、Mac和Ubuntu系统都可以进行深度学习环境的搭建。接下来就记录下自己在Windows系统上搭建深度学习环境的过程,方便自己存档也为大家提供一个参考。
本次环境配置主要模式是基于Anaconda+PyTorch(GPU版)+CUDA+cuDNN进行搭建的。

所需工具:

  1. Python集成开发环境:Anaconda
  2. CUDA、cuDNN:英伟达提供的针对英伟达显卡的运算平台。用来提升神经网络的运行效率,如果电脑显卡不满足要求也是可以不用安装,使用cpu来进行运算。
  3. 开发工具:PyCharm
  4. 深度学习库:PyTorch(也可以使用Google开源的TensorFlow平台,不过一般学术界多用PyTorch平台。)

1.安装Anaconda

1.1下载Anaconda

Anaconda官网:https://www.anaconda.com
清华大学开源镜像下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
两个网站都可以下载,选择适合自己电脑的版本下载即可。
在这里插入图片描述
点击Download即可下载Anaconda。

1.2安装Anaconda

点击下载后的.exe文件进行安装。安装一般没有大问题,一直点next就行。

此处如果电脑只有你一个用户的话,也可以选择Just Me; 选择All Users就代表这台电脑上的所有用户均可使用,否则就需要管理员权限。一般选择All Users即可。
在这里插入图片描述
在这里插入图片描述
此处注意:文件夹必须是空的,不然会报错;其次文件夹名称中不要出现中文字符。
在这里插入图片描述
然后安装即可。
对于情况1,打开cmd输入python -V查看到的版本是anaconda自带的版本;
对于情况2,查看到的版本是安装anaconda之前的origin-python版本:
在这里插入图片描述

1.3添加环境变量

右击“我的电脑”->属性->高级系统设置->环境变量
在这里插入图片描述
选择系统变量的Path进行编辑;
在这里插入图片描述
如果你是直接在D盘建了一个Anaconda文件夹进行安装,就可以直接将以下四个路径添加进去:
D:\Anaconda
D:\Anaconda\Scripts
D:\Anaconda\Library\mingw-w64\bin
D:\Anaconda\Library\bin
在这里插入图片描述
以上路径的格式为:你安装的盘符+你的文件夹名称+后面不变的内容;
例如:你把Anaconda安装到了E盘中名为Python的文件夹,那么你的格式为

E:\Python\Library\mingw-w64\bin

其余三个类同,只需修改前面的内容即可。

1.4测试是否安装成功

1.4.1点击Anaconda Navigator
观察是否进入如下页面(反应时间较长),能顺利进入即可:
在这里插入图片描述
此处可能会出现问题:(没有出现闪退问题可以直接跳至1.4.2继续测试)
我在安装anaconda时,首次打开上面这个页面时,比较顺利但是出现了一个更新提示,点击更新完成后,发现再也打不开Anaconda Navigator这个页面了,或者说打开这个页面会闪退,但是其他地方都没有任何问题,只有Anaconda Navigator无法成功打开。
Anaconda闪退解决方法如下:

  1. 使用管理员权限打开Anaconda Prompt
  2. 升级navigator,执行conda update anaconda-navigator
    在这里插入图片描述
    中间会列出升级版本信息,如上图中间红框所示,核对下升级后的版本,确认可以接受升级的版本,然后输入y确认进行升级。之后几步中也会出现选择是否继续的选项,核对后输入y即可。
  3. 重置navigator,执行anaconda-navigator --reset
    在这里插入图片描述
  4. 升级客户端,执行conda update anaconda-client
    在这里插入图片描述
  5. 升级安装依赖包,执行conda update -f anaconda-client
    在这里插入图片描述
    这时就可以正常打开Anaconda Navigator了。
    1.4.2点击Anaconda Prompt
    这里是在继续测试anaconda是否安装成功。
    输入conda info,观察是否输出如下一堆数据:
    在这里插入图片描述
    再输入conda --version,观察是否输出版本号:
    在这里插入图片描述
    如果提示conda不是内部或外部命令,那就意味着,anaconda没有配置好环境变量,回头检查一下哪里出了问题。
    1.4.3更改conda源(后续安装第三方库可以加快速度)
    官方提供下载的服务器在国外,下载龟速,国内清华大学提供了Anaconda的镜像仓库,我们把源改为清华大学镜像源:

在Anaconda prompt中操作:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

查看是否修改好通道:

conda config --show channels

2.安装NVIDIA显卡驱动

直接进NVIDIA官网:https://www.nvidia.cn/geforce/drivers/
在这里插入图片描述
在这里有GeForce驱动程序,立即下载,这是下载一个自动识别你电脑显卡的NVIDIA驱动,安装好之后记得注册一个账号并登录,然后在里面更新显卡驱动。
在这里插入图片描述
先点驱动程序,然后检查更新,就可以自动更新显卡驱动了。
更新完显卡驱动以后进Anaconda prompt的指令界面,输入nvidia-smi,可以看见自己显卡的相关信息。
在这里插入图片描述

3.安装CUDA和cnDNN

3.1CUDA

安装完NVIDIA以后我们还需要安装CUDA以及cuDNN,这两个是NVIDIA官方给出的便于深度学习计算的补丁
CUDA的安装之前我们先要看看相适配的版本,桌面空白处右键,打开NVIDIA控制面板,依次点击帮助-系统信息,在弹出的界面中选择组件:
在这里插入图片描述
在第三行我们可以看出我这台电脑要安装cuda11.6的版本,我们去下载cuda不可以高于这个版本,最好也别过低。

CUDA官网:https://developer.nvidia.com/cuda-downloads

下载相应版本即可。
下载完之后存放CUDA的文件夹会自动消失,后面可以从C盘找到相对应的路径。

3.2cuDNN

下载地址:https://developer.nvidia.com/rdp/cudnn-download

下载的时候注意版号,一定要让cudnn和cuda的版号完全一样才可以。
下载好之后打开cudnn的压缩包,再打开cuda的目录(目录在图里):
在这里插入图片描述
可以看到cudnn有三个文件夹,把这些文件夹中的东西分别放进cuda对应的文件夹中就好。
至此cuda+cudnn就安装完成了,我们打开anaconda prompt,输入nvcc -V来看看cuda信息:
在这里插入图片描述

4.PyTorch安装

经历了以上几步,我们终于配置好了显卡的驱动相关,接下来我们开始安装pytorch。
首先需要创建一个虚拟环境,然后进入我们创建好的的pytorch环境,输入以下命令:

创建名叫pytorch的虚拟环境:

conda create -n pytorch python=3.9

进入pytorch虚拟环境:

conda activate pytorch

然后安装pytorch:

conda install pytorch

之后等待solving environment,好了以后按照提示按y回车,就自动装好了
来验证一下我们装的是否有效。

即首先用conda activate pytorch进入pytorch虚拟环境,然后在终端输入python进入python界面

分别输入

import torch
torch.cuda.is_available()

在这里插入图片描述
import torch以后回车无error,第二行指令返回的是true就大功告成

我用上面这种方法出现了问题,最后结果是false。所以我换了种方法,如下:
PyTorch官网:https://pytorch.org

官网界面往下拉
在这里插入图片描述
选择自己电脑的相关配置,然后在anaconda prompt中运行Run this Command里的代码:

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

验证方法同上。
代码如下:

import torch
print(torch.__version__) #查看pytorch版本
print(torch.cuda.is_available()) #查看cuda是否可用 输出为True 或者False

以上,我们就完成了windows下简单的深度学习环境配置。

----------------------------------2022.06.09更新:-------------------------------------------

在第四部分pytorch安装中,如果上面的操作均不能成功,那么可以尝试下面的操作:

1.前提:前三部分均成功操作,如下图:

在这里插入图片描述

2.主要思路:建立虚拟环境后再安装pytorch总是出现问题,这里直接用pip安装pytorch,随后将其移动至虚拟环境。

首先下载自己python版本对应的pytorch包
通过如下方式,点击链接进入pytorch包下载路径:https://download.pytorch.org/whl/cu113
在这里插入图片描述
选择匹配自己python版本的torch、torchaudio和torchvision,下图中cu115代表匹配cuda11.5版本,cp39表示匹配python3.9版本,win就表示windows:
在这里插入图片描述
下载好这三个包后将其放置于site-packages目录下,即你平时安装包所在的位置,我的在C:\Users\25837\AppData\Roaming\Python\Python39\site-packages
在这里插入图片描述
接着在目录栏中直接cmd运行,然后将三个whl文件按次序分别安装,

pip install 名称

在这里插入图片描述
安装成功以后该目录下就会出现如下六个文件夹:
在这里插入图片描述
此时再重新进入python环境,输入如下代码检验环境是否配置成功:

import torch
print(torch.__version__) #查看pytorch版本
print(torch.cuda.is_available()) #查看cuda是否可用 输出为True 或者False

在这里插入图片描述
此时,pytorch环境配置完成——但这里只是在python中配置完成,如果在conda中创建虚拟环境,这个虚拟环境中就不包含torch及其深度学习环境。

所以下面我们配置conda创建的虚拟环境的深度学习环境!!!

3.conda创建的虚拟环境中配置深度学习环境

首先用管理员身份打开anaconda prompt,这样创建的虚拟环境会在anaconda安装目录下的envs中,否则创建的虚拟环境会因为没有权限而创建到C盘!!
在这里插入图片描述
创建完成之后,直接将前面利用pip安装的torch相关的六个文件夹复制到虚拟环境下的site-packages目录下,然后进行验证。

import torch
print(torch.__version__) #查看pytorch版本
print(torch.cuda.is_available()) #查看cuda是否可用 输出为True 或者False

结果为Ture即环境配置成功!!

(经验帖里说这样直接复制过来就可以,但我试了之后并没有成功,不知道是什么原因呜呜呜!!)

----------------------------------2022.06.10更新----------------------------------------

经过几天的折腾之后,终于成功配置在虚拟环境中配置好了pytorch深度学习环境!!!

上面说到直接复制粘贴的方法对我不适用,所以我又重新换了新的方法。
即换镜像源,上面的操作其实是没有问题的,只不过不同的镜像源下载速度不同,有可能会出现中断的现象,于是pytorch就会安装不成功,所以此处的操作步骤依然是:

1.先在anaconda中创建一个pytorch的虚拟环境

conda create -n pytorch python=3.9

2.利用conda命令安装pytorch

建立好pytorch虚拟环境后,先进入pytorch虚拟环境然后安装pytorch

用以下命令进入pytorch环境:

conda activate pytorch

然后用下面的代码安装pytorch:

注:此处可以将11.3改为你安装的cuda对应的版本,比如我安装的cuda是11.5版本,复制完代码后直接将11.3改为11.5后运行即可 (不过不更改也不影响)

这里的安装过程中如果出现中断或者安装不成功的情况时,就可以更改一下镜像源重新安装。

具体镜像源可以自行搜索查找。
(因为我用的那个镜像源也太慢了,我也不知道哪个最快最好用呜呜呜,我就不推荐了呜呜呜,反正就多试几个镜像源总能下载成功的!!)
在这里插入图片描述

注:如果利用conda命令总是不成功,也可以尝试使用pip命令进行安装,这时就需要将镜像源改成pip的镜像源;同时如果conda命令和pip命令都不行,也可以利用先下载whl文件,然后pip直接安装的方法。

(这里只是给大家提供不同的思路,具体操作可以参考上述流程或者自行搜索。总之多试几种方法总能成功的。而且顺利的话,说不定首次安装就能顺利成功,我第一次安装的时候就贼顺利,这次重新安装就废了老大劲踩了很多坑呜呜呜)

3.检验安装是否成功

同样在安装完成后,利用下面的代码检验一下是否成功安装。

import torch
print(torch.__version__) #查看pytorch版本
print(torch.cuda.is_available()) #查看cuda是否可用 输出为True 或者False

在这里插入图片描述

------------------------------此时,pytorch环境配置完成。-----------------------------------

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/10169.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

惊呆了,2小时我就学会了Charles抓包的详细教程

目录 一、什么是Charles 二、下载Charles 三、设置Charles代理 四、配置设备代理 五、抓包操作 六、常见问题及解决方法 抓包不到某些应用程序 Charles抓包后网站出现异常 七、总结 一、什么是Charles Charles是一个跨平台的HTTP代理服务工具,可以用来查看…

软件测试工作主要做什么

随着信息技术的发展和普及,人们对软件的使用越来越普及。但是在软件的使用过程中,软件的效果却不尽如人意。为了确保软件的质量,整个软件业界已经逐渐意识到测试的重要性,也有越来越多的小伙伴加入了软件测试这个行业中来。软件测…

从FPGA说起的深度学习(六)-任务并行性

这是新的系列教程,在本教程中,我们将介绍使用 FPGA 实现深度学习的技术,深度学习是近年来人工智能领域的热门话题。在本教程中,旨在加深对深度学习和 FPGA 的理解。用 C/C 编写深度学习推理代码高级综合 (HLS) 将 C/C 代码转换为硬…

ServletAPI详解(四)-HttpServletResponse

我们来看第三个方法,HttpServletResponse 在servlet运行原理中提到,servlet代码中的doXXX方法的目的就是根据请求计算响应,然后将响应数据设置到HttpServletResponse对象中,然后 Tomcat 就会把这个 HttpServletResponse 对象按照 HTTP 协议的格式, 转成一个字符串, 并通过 Soc…

Linux Shell 实现一键部署二进制Rabbitmq

rabbitmq 前言 RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件)。RabbitMQ服务器是用Erlang语言编写的,而集群和故障转移是构建在开放电信平台框架上的。所有主要的编程语言均有与代…

MPC的560x系列的运行模式的介绍

一、模式简介 1、运行模式 一共11种模式,分别为RESET、DRUN、SAFE、TEST、RUN0、RUN1、RUN2、RUN3、HALT、STOP、STANDBY。其中RESET、DRUN、SAFE、TEST是系统工作模式,用户不用个特别关系,而后面几种是用于经常使用到的工作模式。 RESET&a…

Linux搭建docker

1. 查看系统的内核版本 [rootwide ~]# uname -r 3.10.0-1160.el7.x86_642. 将yum更新到最新版本 [rootwide ~]# yum upate -y Complete!3. 安装Docker所需的依赖包 [rootwide ~]# sudo yum install -y yum-utils device-mapper-persistent-data lvm2 Loaded plugins: fastes…

MyBatis多表查询+动态sql

文章目录MyBatis多表查询1. 多表一对一查询2. 多表一对多动态SQL1.\<if\>标签2.\<trim\>标签3. \<where\>标签4.\<set\>标签5. \<foreach\>标签MyBatis多表查询 在全局配置文件中中设置MyBatis执行日志 mybatis:configuration:log-impl: org.a…

hadoop使用MapReduce统计单词出现次数案例

前言 前面的文章已经展示了如何在windows上传文件到hdfs&#xff0c;上传后如何简单的做统计&#xff0c;本文展示一下。上传文件到HDFS链接 这里我们做一个案例&#xff0c;对一个上传到HDFS的文档中统计good出现的次数。 文件内容如下 这里我使用的是【上传文件到HDFS链接…

南方猛将加盟西方手机完全是臆测,他不会希望落得兔死狗烹的结局

早前南方某科技企业因为命名的问题闹得沸沸扬扬&#xff0c;于是一些业界人士就猜测该猛将会加盟西方手机&#xff0c;对于这种猜测可以嗤之以鼻&#xff0c;从西方手机以往的作风就可以看出来它向来缺乏容纳猛将的气量。一、没有猛将的西方手机迅速沉沦曾几何时&#xff0c;西…

linux服务器禁止ping命令,linux服务器禁ping如何解除

linux服务器禁止ping命令&#xff0c;linux服务器禁ping如何解除 我是艾西&#xff0c;在我们搭建网站或做某些程序时&#xff0c;不少人会问禁ping是什么意思&#xff0c;怎么操作的对于业务有哪些好处等&#xff0c;今天艾西一次给你们说清楚。 禁PING的意思是&#xff1a;不…

《花雕学AI》12:从ChatGPT的出现看人类与人工智能的互补关系与未来发展

马云说道&#xff0c;ChatGPT这一类技术已经对教育带来挑战&#xff0c;但是ChatGPT这一类技术只是AI时代的开始。 谷歌CEO桑德尔皮猜曾说&#xff1a;“人工智能是我们人类正在从事的最为深刻的研究方向之一&#xff0c;甚至要比火与电还更加深刻。” 360周鸿祎认为&#xf…

Java Web 实战 15 - 计算机网络之网络编程套接字

文章目录一 . 网络编程中的基本概念1.1 网络编程1.2 客户端(client) / 服务器(server)1.3 请求(request) / 响应(response)1.4 客户端和服务器之间的交互数据1.4.1 一问一答1.4.2 多问一答1.4.3 一问多答1.4.4 多问多答二 . socket 套接字2.1 UDP 的 Socket API2.1.1 引子2.1.2…

Ubuntu20.04 个人配置和i3美化

Ubuntu20.04 个人配置和i3美化 本文是基于个人习惯和审美&#xff0c;快速配置一个新ubuntu的步骤。脚本在资源里给出&#xff0c;但仍有部分配置文件需在脚本执行后手动修改,文中已用红色字体标出 更新apt源 备份原来的源更换阿里源 # 备份 sudo mv /etc/apt/sources.list…

基于Pytorch的可视化工具

深度学习网络通常具有很深的层次结构&#xff0c;而且层与层之间通常会有并联、串联等连接方式。当使用PyTorch建立一个深度学习网络并输出文本向读者展示网络的连接方式是非常低效的&#xff0c;所以需要有效的工具将建立的深度学习网络结构有层次化的展示&#xff0c;这就需要…

RK3399平台开发系列讲解(基础篇)Linux 传统间隔定时器

🚀返回专栏总目录 文章目录 一、设置间隔定时器 setitimer()二、查询定时器状态 getitimer()三、更简单的定时接口 alarm()四、传统定时器的应用4.1、为阻塞操作设置超时4.2、性能剖析五、传统定时器的局限性沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将详细…

【Vue】el与data的两种写法

data与el的2种写法 el有两种写法 new Vue时配置el属性。先创建Vue实例。随后再通过vm.$mount(‘root’)指定el的值。 data有2种写法 对象式: data:{}函数式: data(){ return {}} 如何选择&#xff1a;目前哪种写法都可以&#xff0c;以后学习到组件时&#xff0c;data必须使…

ERP软件的作用

ERP软件的运用是在企业管理系统的数据基础上实现的&#xff0c;它的应用涉及到企业的各个部门。ERP软件是在制造资源计划的基础上进一步发展而成的对企业供应链的管理软件。ERP是集采购、销售和库存、财务、生产管理和委托加工为一体的企业管理软件。它是集企业管理理念、业务流…

快速排序详解

一、定义 快速排序&#xff08;英语&#xff1a;Quicksort&#xff09;&#xff0c;又称分区交换排序&#xff08;英语&#xff1a;partition-exchange sort&#xff09;&#xff0c;简称「快排」&#xff0c;是一种被广泛运用的排序算法。 二、基本原理 快速排序是一个基于 分…

PostgreSQL下载、安装、Problem running post-install step的解决、连接PostgreSQL

我是参考《SQL基础教程》来安装的&#xff0c;关于书的介绍、配套视频、相关代码可以参照下面的链接&#xff1a; SQL基础教程&#xff08;第2版&#xff09; (ituring.com.cn) 一、下载 我直接打开书中的下载链接时&#xff0c;显示的是这个界面&#xff1a; You are not …