Opencv-C++笔记 (18) : 轮廓和凸包

文章目录

  • 一、轮廓
    • findContours发现轮廓
    • drawContours绘制轮廓
    • 代码
  • 二.几何及特性概括——凸包(Convex Hull)
    • 凸包概念
    • 凸包扫描算法介绍——Graham扫描算法
  • 相关API介绍
  • 程序示例
  • 轮廓集合及特性性概括——轮廓周围绘制矩形框和圆形
    • 相关理论介绍
    • 轮廓周围绘制矩形 -API
    • 绘制步骤
    • 程序实例
  • 四.图像矩(Image Moments)
    • 1、相关理论
    • 2、API介绍
    • 计算轮廓面积cv::contourArea
    • .计算轮廓长度cv::arcLength
    • 例程
  • 五、多边形测试
  • 1.相关理论
    • 2.相关API介绍
    • 程序示例

一、轮廓

轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法。 所以边缘提取的阈值选定会影响最终轮廓发现结果

轮廓查找步骤:

  • 输入图像转为灰度图像cvtColor
  • 使用Canny进行边缘提取或者threshold阈值操作,得到二值图像
  • 使用findContours寻找轮廓
  • 使用drawContours绘制轮廓

findContours发现轮廓

在二值图像上发现轮廓使用

cv::findContours(
InputOutputArray binImg,     输入图像,非0的像素被看成1,0的像素值保持不变,8-bit
OutputArrayOfArrays contours,  全部发现的轮廓对象
OutputArray, hierachy      图该的拓扑结构 std::vector<cv::Vec4i>,可选,该轮廓发现算法正是基于图像拓扑结构实现。它的元素与轮廓的数量一样多。对于每个第 i 个轮廓轮廓[i],元素hierarchy[i][0]、hierarchy[i][1]
int mode,            轮廓返回的模式
int method,            发现方法
Point offset=Point()       轮廓像素的位移,默认(0, 0)没有位移
)

drawContours绘制轮廓

在二值图像上发现轮廓cv::findContours之后对发现的轮廓数据进行绘制显示

drawContours(
InputOutputArray binImg,      输出图像
OutputArrayOfArrays contours,    全部发现的轮廓对象
Int contourIdx            轮廓索引号
const Scalar & color,        绘制颜色
int thickness,/           绘制线宽
int lineType ,             线的类型LINE_8
InputArray hierarchy,        拓扑结构图
int maxlevel,           最大层数, 0只绘制当前的,1表示绘制绘制当前及其内嵌的轮廓
Point offset=Point()        轮廓位移,可选

代码

//轮廓发现:通过cv::fingContoursAPI查找轮廓,通过cv::drawContours绘制轮廓
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int threshold_value = 100;
int threshold_max = 255;
RNG rng;
const char* output_win = "Demo_Contour";
void Demo_Contours(int, void*);
Mat src,dst;
int main(int argc, char** argv) {

	src = imread("D:/photos/45.png");
	if (src.empty()) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	imshow("input image", src);
	cvtColor(src, src, CV_BGR2GRAY);//灰度化图像,为Canny边缘检测做准备

	const char* trackbar_title = "threshold_value";
	createTrackbar(trackbar_title, output_win, &threshold_value, threshold_max, Demo_Contours);//动态调整Canny边缘检测的阈值
	Demo_Contours(0, 0);//使程序刚开始就有结果,与createTrackbar无关


	waitKey(0);
	return 0;
}

void Demo_Contours(int, void*) {
	Mat canny_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	Canny(src, canny_output, threshold_value, threshold_value * 2, 3, false);//Canny边缘检测,3代表算子尺寸
	imshow("canny image", canny_output);
	findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	//contours储存轮廓的点集,轮廓提取方式为RETR_TREE,轮廓表达为:CHAIN_APPROX_SIMPLE
	dst = Mat::zeros(src.size(), CV_8UC3);
	RNG rng(12345);
	for (size_t i = 0; i < contours.size(); i++) {//逐条绘制轮廓
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
	}
	imshow(output_win, dst);

}

在这里插入图片描述

二.几何及特性概括——凸包(Convex Hull)

凸包概念

什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部。
**正式定义:**包含点集合S中所有点的最小凸多边形称为凸包

凸包扫描算法介绍——Graham扫描算法

  • 首先选择Y方向最低的点作为起始点p0。
  • 从p0开始极坐标扫描,依次添加p1….pn(排序顺序是根据极坐标的角度大小,逆时针方向)。
  • 对每个点pi来说,如果添加pi点到凸包中导致一个左转向(逆时针方法)则添加该点到凸包,
    反之如果导致一个右转向(顺时针方向)删除该点从凸包中。
    在这里插入图片描述

相关API介绍

convexHull(
InputArray points,// 输入候选点,来自findContours
OutputArray hull,// 凸包
bool clockwise,// default true, 顺时针方向
bool returnPoints)// true 表示返回点个数,如果第二个参数是			vector<Point>则自动忽略
}

凸包逼近实现步骤:

  • 首先把图像从RGB转为灰度。

  • 然后再转为二值图像。

  • 在通过发现轮廓得到候选点。

  • 凸包API调用。

  • 绘制显示。

程序示例

#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int threshold_value = 100;
int threshold_max = 255;
RNG rng(12345);
const char* output_win = "Demo_convex hull";
void threshold_callback(int, void*);
Mat src, dst,dst2,gray_src;
int main(int argc, char** argv) {

	src = imread("D:/photos/45.png");
	if (src.empty()) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	const char* trackbar_label = "threshold:";
	imshow("input image", src);
	cvtColor(src, gray_src, CV_BGR2GRAY);
	blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);//均值模糊进行降噪处理
	imshow("src_gray", gray_src);
	createTrackbar(trackbar_label, output_win, &threshold_value, threshold_max, threshold_callback);
	threshold_callback(0, 0);
	waitKey(0);
	return 0;
}
void threshold_callback(int, void*) {
	Mat bin_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	threshold(gray_src, bin_output, threshold_value, threshold_max, THRESH_BINARY);
	findContours(bin_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	vector<vector<Point>> convexs(contours.size());
	dst = Mat::zeros(src.size(), CV_8UC3);
	dst2 = Mat::zeros(src.size(), CV_8UC3);
	for (size_t i = 0; i < contours.size(); i++) {
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		convexHull(contours[i], convexs[i], false, true);
		//drawContours(dst, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
	}
	vector<Vec4i> empty(0);
		for (size_t k = 0; k < contours.size(); k++) {
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		drawContours(dst2, contours, k, color, 2, LINE_8, hierachy,1, Point(0, 0));
		drawContours(dst, convexs, k, color, 2, LINE_8, empty, 0, Point(0, 0));//注意此时hieracgy选项填Mat()
	}
	imshow(output_win, dst);
	imshow("contours_Demo", dst2);
	return;		
}

在这里插入图片描述

轮廓集合及特性性概括——轮廓周围绘制矩形框和圆形

相关理论介绍

在这里插入图片描述

轮廓周围绘制矩形 -API

approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)
基于RDP算法实现,目的是减少多边形轮廓点数。
在这里插入图片描述

cv::minEnclosingCircle(InputArray points, //得到最小区域圆形
Point2f& center, // 圆心位置
float& radius)// 圆的半径
cv::fitEllipse(InputArray points)得到最小椭圆

绘制步骤

首先将图像变为二值图像。
发现轮廓,找到图像轮廓。
通过相关API在轮廓点上找到最小包含矩形和圆,旋转矩形与椭圆。
绘制它们。

程序实例

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;
Mat src, gray_src, drawImg;
int threshold_v = 170;
int threshold_max = 255;
const char* output_win = "rectangle-demo";
RNG rng(12345);
void Contours_Callback(int, void*);
int main(int argc, char** argv) {
	src = imread("D:/photos/45.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, gray_src, CV_BGR2GRAY);
	blur(gray_src, gray_src, Size(3, 3), Point(-1, -1));
	
	const char* source_win = "input image";
	namedWindow(source_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	imshow(source_win, src);

	createTrackbar("Threshold Value:", output_win, &threshold_v, threshold_max, Contours_Callback);
	Contours_Callback(0, 0);

	waitKey(0);
	return 0;
}

void Contours_Callback(int, void*) {
	Mat binary_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	threshold(gray_src, binary_output, threshold_v, threshold_max, THRESH_BINARY);
	//imshow("binary image", binary_output);
	findContours(binary_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(-1, -1));

	vector<vector<Point>> contours_ploy(contours.size());
	vector<Rect> ploy_rects(contours.size());
	vector<Point2f> ccs(contours.size());
	vector<float> radius(contours.size());

	vector<RotatedRect> minRects(contours.size());
	vector<RotatedRect> myellipse(contours.size());

	for (size_t i = 0; i < contours.size(); i++) {
		approxPolyDP(Mat(contours[i]), contours_ploy[i], 3, true);
		ploy_rects[i] = boundingRect(contours_ploy[i]);
		minEnclosingCircle(contours_ploy[i], ccs[i], radius[i]);
		if (contours_ploy[i].size() > 5) {
			myellipse[i] = fitEllipse(contours_ploy[i]);
			minRects[i] = minAreaRect(contours_ploy[i]);
		}
	}

	// draw it
	drawImg = Mat::zeros(src.size(), src.type());
	Point2f pts[4];
	for (size_t t = 0; t < contours.size(); t++) {
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		//rectangle(drawImg, ploy_rects[t], color, 2, 8);
		//circle(drawImg, ccs[t], radius[t], color, 2, 8);
		if (contours_ploy[t].size() > 5) {
			ellipse(drawImg, myellipse[t], color, 1, 8);
			minRects[t].points(pts);
			for (int r = 0; r < 4; r++) {
				line(drawImg, pts[r], pts[(r + 1) % 4], color, 1, 8);
			}
		}
	}

	imshow(output_win, drawImg);
	return;
}

运行效果:
在这里插入图片描述

四.图像矩(Image Moments)

1、相关理论

在这里插入图片描述
在这里插入图片描述

2、API介绍

1.计算矩cv::moments

moments(
InputArray  array,//输入数据
bool   binaryImage=false // 是否为二值图像
)

API介绍与使用 – cv::moments 计算生成数据在这里插入图片描述

计算轮廓面积cv::contourArea

contourArea(
InputArray  contour,//输入轮廓数据
bool   oriented// 默认false、返回绝对值)
}

.计算轮廓长度cv::arcLength

arcLength(
InputArray  curve,//输入曲线数据
bool   closed// 是否是封闭曲线)
}

实现步骤:

提取图像边缘。
发现轮廓。
计算每个轮廓对象的矩。
计算每个对象的中心、弧长、面积

例程

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

Mat src, gray_src;
int threshold_value = 80;
int threshold_max = 255;
const char* output_win = "image moents demo";
RNG rng(12345);
void Demo_Moments(int, void*);
int main(int argc, char** argv) {
	src = imread("D:/photos/45.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	cvtColor(src, gray_src, CV_BGR2GRAY);
	GaussianBlur(gray_src, gray_src, Size(3, 3), 0, 0);

	char input_win[] = "input image";
	namedWindow(input_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);
	imshow(input_win, src);

	createTrackbar("Threshold Value : ", output_win, &threshold_value, threshold_max, Demo_Moments);
	Demo_Moments(0, 0);

	waitKey(0);
	return 0;
}

void Demo_Moments(int, void*) {
	Mat canny_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;

	Canny(gray_src, canny_output, threshold_value, threshold_value * 2, 3, false);
	findContours(canny_output, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

	vector<Moments> contours_moments(contours.size());
	vector<Point2f> ccs(contours.size());
	for (size_t i = 0; i < contours.size(); i++) {
		contours_moments[i] = moments(contours[i]);
		ccs[i] = Point(static_cast<float>(contours_moments[i].m10 / contours_moments[i].m00), static_cast<float>(contours_moments[i].m01 / contours_moments[i].m00));
	}
	Mat drawImg;// = Mat::zeros(src.size(), CV_8UC3);
	src.copyTo(drawImg);
	for (size_t i = 0; i < contours.size(); i++) {
		if (contours[i].size() < 100) {
			continue;
		}
		Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
		printf("center point x : %.2f y : %.2f\n", ccs[i].x, ccs[i].y);
		printf("contours %d area : %.2f   arc length : %.2f\n", i, contourArea(contours[i]), arcLength(contours[i], true));
		drawContours(drawImg, contours, i, color, 2, 8, hierachy, 0, Point(0, 0));
		circle(drawImg, ccs[i], 2, color,2, 8);
	}

	imshow(output_win, drawImg);
	return;
}

在这里插入图片描述

五、多边形测试

1.相关理论

点多边形测试 : 测试一个点是否在给定的多边形内部,边缘或者外部。
在这里插入图片描述

2.相关API介绍

cv::pointPolygonTest
pointPolygonTest(
InputArray  contour,// 输入的轮廓
Point2f  pt, // 测试点
bool  measureDist // 是否返回距离值,如果是false,1表示在内面,0表示在边界上,-1表示在外部,true返回实际距离
)
返回数据是double类型

程序示例

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;
int main(int argc, char** argv) {
	const int r = 100;
	Mat src = Mat::zeros(r * 4, r * 4, CV_8UC1);

	vector<Point2f> vert(6);
	vert[0] = Point(3 * r / 2, static_cast<int>(1.34*r));   
	vert[1] = Point(1 * r, 2 * r);
	vert[2] = Point(3 * r / 2, static_cast<int>(2.866*r));   
	vert[3] = Point(5 * r / 2, static_cast<int>(2.866*r));
	vert[4] = Point(3 * r, 2 * r);   
	vert[5] = Point(5 * r / 2, static_cast<int>(1.34*r));

	for (int i = 0; i < 6; i++) {
		line(src, vert[i], vert[(i + 1) % 6], Scalar(255), 3, 8, 0);
	}
	
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	Mat csrc;
	src.copyTo(csrc);
	findContours(csrc, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	Mat raw_dist = Mat::zeros(csrc.size(), CV_32FC1);
	for (int row = 0; row < raw_dist.rows; row++) {
		for (int col = 0; col < raw_dist.cols; col++) {
			double dist = pointPolygonTest(contours[0], Point2f(static_cast<float>(col), static_cast<float>(row)), true);
			raw_dist.at<float>(row, col) = static_cast<float>(dist);
		}
	}

	double minValue, maxValue;
	minMaxLoc(raw_dist, &minValue, &maxValue, 0, 0, Mat());
	Mat drawImg = Mat::zeros(src.size(), CV_8UC3);
	for (int row = 0; row < drawImg.rows; row++) {
		for (int col = 0; col < drawImg.cols; col++) {
			float dist = raw_dist.at<float>(row, col);
			if (dist > 0) {
				drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(1.0 - (dist / maxValue)) * 255);
			}
			else if (dist < 0) {
				drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(1.0 - (dist / minValue)) * 255);
			} else {
				drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(255 - dist));
				drawImg.at<Vec3b>(row, col)[1] = (uchar)(abs(255 - dist));
				drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(255 - dist));
			}
		}
	}

	const char* output_win = "point polygon test demo";
	char input_win[] = "input image";
	namedWindow(input_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);

	imshow(input_win, src);
	imshow(output_win, drawImg);

	waitKey(0);
	return 0;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/100568.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一台服务器上部署 Redis 伪集群

哈喽大家好&#xff0c;我是咸鱼 今天这篇文章介绍如何在一台服务器&#xff08;以 CentOS 7.9 为例&#xff09;上通过 redis-trib.rb 工具搭建 Redis cluster &#xff08;三主三从&#xff09; redis-trib.rb 是一个基于 Ruby 编写的脚本&#xff0c;其功能涵盖了创建、管…

ExpressLRS开源之接收机固件编译烧录步骤

ExpressLRS开源之接收机固件编译烧录步骤 1. 源由2. 编译步骤2.1 推荐源代码指定方案2.2 方法一&#xff1a;ELRS Configurator步骤一&#xff1a;下载ELRS Configurator工具步骤二&#xff1a;安装ELRS Configurator工具步骤三&#xff1a;使用ELRS Configurator工具进行配置步…

3D点云处理:获取最高层范围内的点(附源码)

文章目录 0. 测试效果1. 基本内容2. 代码实现文章目录:3D视觉个人学习目录微信: dhlddxB站: Non-Stop_目标:仅获取最高层范围内的点云用于后续处理0. 测试效果 红色为提取的最高层范围内的点云 1. 基本内容 要获取点云中特定高度范围内的点云,可以使用高度条件过滤的原理。…

Docker技术--Docker简介和架构

1.Docker简介 (1).引入 我们之前学习了EXSI&#xff0c;对于虚拟化技术有所了解&#xff0c;但是我们发现类似于EXSI这样比较传统的虚拟化技术是存在着一定的缺陷:所占用的资源比较多&#xff0c;简单的说&#xff0c;就是你需要给每一个用户提供一个操作平台&#xff0c;这一个…

【数据结构】 二叉树面试题讲解->贰

文章目录 &#x1f30f;引言&#x1f384;[二叉树遍历](https://www.nowcoder.com/practice/4b91205483694f449f94c179883c1fef?tpId60&&tqId29483&rp1&ru/activity/oj&qru/ta/tsing-kaoyan/question-ranking)&#x1f431;‍&#x1f464;题目描述&#…

【Flutter】下载安装Flutter并使用学习dart语言

前言 安装flutter, 并使用flutter内置的dartSDK学习使用dart语言。 编辑器&#xff1a; Android Studio fluuter 版本 : flutter_windows_3.13.1 内置dartSDK : 3.1.0 dart路径路径&#xff1a; flutter安装路径\bin\cache\dart-sdk 安装Flutter 下载安装包 flutter下载地址…

智慧工地源码 智慧大屏、手机APP、SaaS模式

一、智慧工地可以通过安全八要素来提升安全保障&#xff0c;具体措施包括&#xff1a; 1.安全管理制度&#xff1a;建立科学完善的安全管理制度&#xff0c;包括安全标准规范、安全生产手册等&#xff0c;明确各项安全管理职责和要求。 2.安全培训教育&#xff1a;对工地人…

MySQL数据库——多表查询(3)-自连接、联合查询、子查询

目录 自连接 查询语法 自连接演示 联合查询 查询语法 子查询 介绍 标量子查询 列子查询 行子查询 表子查询 自连接 通过前面的学习&#xff0c;我们对于连接已经有了一定的理解。而自连接&#xff0c;通俗地去理解就是自己连接自己&#xff0c;即一张表查询多次。…

Qt/C++编写视频监控系统81-Onvif报警抓图和录像并回放

一、前言 视频监控系统中的图文警情模块&#xff0c;是通过Onvif协议的事件订阅拿到的&#xff0c;通过事件订阅后&#xff0c;设备的各种报警事件比如入侵报警/遮挡报警/越界报警/开关量报警等&#xff0c;触发后都会主动往订阅者发送&#xff0c;而且一般都是会发送两次&…

【C++】C++11新特性(下)

上篇文章&#xff08;C11的新特性&#xff08;上&#xff09;&#xff09;我们讲述了C11中的部分重要特性。本篇接着上篇文章进行讲解。本篇文章主要进行讲解&#xff1a;完美转发、新类的功能、可变参数模板、lambda 表达式、包装器。希望本篇文章会对你有所帮助。 文章目录 一…

Git和Github的基本用法

目录 背景 下载安装 安装 git for windows 安装 tortoise git 使用 Github 创建项目 注册账号 创建项目 下载项目到本地 Git 操作的三板斧 放入代码 三板斧第一招: git add 三板斧第二招: git commit 三板斧第三招: git push 小结 &#x1f388;个人主页&#xf…

多源最短路径算法:Floyd-Warshall算法分析

文章目录 图的邻接矩阵 一.Floyd-Warshall算法思想(基于动态规划)二.Floyd-Warshall算法接口笔记附录:单源最短路径--Bellman-Ford算法1.Bellman-Ford算法接口核心部分2.Bellman-Ford算法接口 图的邻接矩阵 namespace Graph_Structure {//Vertex是代表顶点的数据类型,Weight是…

开发智能应用的新范式:大数据、AI和云原生如何构建智能软件

文章目录 1.利用大数据实现智能洞察2. 集成人工智能和机器学习3. 云原生架构的弹性和灵活性4. 实现实时处理和响应5. 数据安全和隐私保护6. 可解释性和透明性7. 持续创新和迭代8. 数据伦理和合规性 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &a…

Kafka3.0.0版本——手动调整分区副本示例

目录 一、服务器信息二、启动zookeeper和kafka集群2.1、先启动zookeeper集群2.2、再启动kafka集群 三、手动调整分区副本3.1、手动调整分区副本的前提条件3.2、手动调整分区副本的示例需求3.3、手动调整分区副本的示例 一、服务器信息 四台服务器 原始服务器名称原始服务器ip节…

【位运算】leetcode371:两整数之和

一.题目描述 两整数之和 二.思路分析 题目要求我们实现两整数相加&#xff0c;但是不能使用加号&#xff0c;应该立马想到是用位运算来解决问题。之前说过&#xff0c;异或就是“无进位相加”&#xff0c;故本题可以先将两数异或&#xff0c;然后想办法让得到的结果进位即可。…

前几天写的博客被选中进入【CSDN月度精选】榜单

小收获&#xff0c;记录一下&#xff0c;哈哈 这个貌似是CSDN给的排名和得分&#xff1a;

Linux 常见命令操作

一、目录管理 1.1 列出目录 ls # ls 命令 # -a 参数&#xff0c;查看全部的文件&#xff0c;包括隐藏的文件 # -l 参数&#xff0c;列出所有的文件&#xff0c;包括文件的属性和权限&#xff0c;不显示隐藏文件 [rootlocalhost /]# ls bin boot dev etc home lib lib64…

Java 包装类和Arrays类(详细解释)

目录 包装类 作用介绍 包装类的特有功能 Arrays类 Arrays.fill() Arrays.toString() Arrays.sort() 升序排序 降序排序 Arrays.equals() Arrays.copyOf() Arrays.binarySearch() 包装类 作用介绍 包装类其实就是8种基本数据类型对应的引用类型。 基本数据类型引用…

ToBeWritten之VSOC安全运营

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…

D357周赛复盘:模拟双端队列反转⭐⭐+贪心

文章目录 2810.故障键盘1.直接用reverse解决2.双端队列 2811.判断能否拆分数组&#xff08;比较巧妙的贪心&#xff09;思路完整版 2812.找出最安全路径2810.故障键盘1.直接用reverse解决2.双端队列 2811.判断能否拆分数组&#xff08;比较巧妙的贪心&#xff09;思路完整版 28…