缓存技术(缓存穿透,缓存雪崩,缓存击穿)

大家好 , 我是苏麟 , 今天聊一聊缓存 . 

这里需要一些Redis基础 (可以看相关文章等)

本文章资料来自于 : 黑马程序员  如果想要了解更详细的资料去黑马官网查看

前言:什么是缓存?

缓存,就是数据交换的 缓冲区 (称作Cache [ kæʃ ] ),俗称的缓存就是缓冲区内的数据,是存贮数据的临时地方,读写性能较高。一般从数据库中获取,存储于本地


为什么要使用缓存

缓存的作用

  1. 速度快
  2. 降低后端负载
  3. 提高读写效率,降低响应时间

缓存的成本

  1. 数据一致性成本
  2. 代码维护成本
  3. 运维成本

如何使用缓存

浏览器缓存:主要是存在于浏览器端的缓存

应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存

数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中

CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存


实现缓存

Redis简单实现

没使用缓存之前

@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {
    //这里是直接查询数据库
    return shopService.queryById(id);
}

 使用缓存

    @GetMapping("/{id}")
    public Result queryShopById(@PathVariable("id") Long id) {
        String key = "cache:shop:" + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        // 4.不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5.不存在,返回错误
        if (shop == null) {
            return Result.fail("店铺不存在!");
        }
        // 6.存在,写入redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop));
        // 7.返回
        return Result.ok(shop);
    }

缓存流程图 

缓存更新策略

缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。

内存淘汰:redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

超时剔除:当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存

主动更新:我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

数据库缓存不一致解决方案

由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:

用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案

Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理

Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致

数据库和缓存不一致采用什么方案

综合考虑使用方案一,但是方案一调用者如何处理呢?这里有几个问题

操作缓存和数据库时有三个问题需要考虑:

如果采用第一个方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大,我们可以把缓存删除,等待再次查询时,将缓存中的数据加载出来

  • 删除缓存还是更新缓存?

    • 更新缓存:每次更新数据库都更新缓存,无效写操作较多

    • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存

  • 如何保证缓存与数据库的操作的同时成功或失败?

    • 单体系统,将缓存与数据库操作放在一个事务

    • 分布式系统,利用TCC等分布式事务方案

应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存,原因在于,如果你选择第一种方案,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。

  • 先操作缓存还是先操作数据库?

    • 先删除缓存,再操作数据库

    • 先操作数据库,再删除缓存

实现商铺和缓存与数据库双写一致

核心思路如下:

修改ShopController中的业务逻辑,满足下面的需求:

根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间

根据id修改店铺时,先修改数据库,再删除缓存

修改重点代码1:修改ShopServiceImpl的queryById方法

设置redis缓存时添加过期时间

    @GetMapping("/{id}")
    public Result queryShopById(@PathVariable("id") Long id) {
        String key = "cache:shop:" + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        // 4.不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5.不存在,返回错误
        if (shop == null) {
            return Result.fail("店铺不存在!");
        }
        // 6.存在,写入redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);
        // 7.返回
        return Result.ok(shop);
    }

修改重点代码2

代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题

    @Override
    @Transactional
    public Result update(Shop shop) {
        Long id = shop.getId();
        if (id == null) {
            return Result.fail("店铺id不能为空");
        }
        // 1更新数据库
        updateById(shop);
        // 2.删除缓存
        stringRedisTemplate.delete(key:CACHE_SHOP_KEY + id);
        return Result.ok();
    }

缓存穿透

缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

常见的解决方案有两种:

  • 缓存空对象

    • 优点:实现简单,维护方便

    • 缺点:

      • 额外的内存消耗

      • 可能造成短期的不一致

  • 布隆过滤

    • 优点:内存占用较少,没有多余key

    • 缺点:

      • 实现复杂

      • 存在误判可能 

缓存空对象思路分析:当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了

布隆过滤:布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,

假设布隆过滤器判断这个数据不存在,则直接返回

这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突

编码解决缓存穿透问题

核心思路如下:

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

 修改代码

    @GetMapping("/{id}")
    public Result queryShopById(@PathVariable("id") Long id) {
        String key = "cache:shop:" + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        //shopJson 为 "" 的时候
        if (shopJson != null) {
            return Result.ok("店铺不存在");
        }
        // 4.不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5.不存在,返回错误
        if (shop == null) {
             stringRedisTemplate.opsForValue().set(key, "",2L, TimeUnit.MINUTES);
        }
        // 6.存在,写入redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);
        // 7.返回
        return Result.ok(shop);
    }

小总结:

缓存穿透产生的原因是什么?

  • 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

  • 缓存null值

  • 布隆过滤

缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案:

  • 给不同的Key的TTL添加随机值

    @GetMapping("/{id}")
    public Result queryShopById(@PathVariable("id") Long id) {
        String key = "cache:shop:" + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            Shop shop = JSONUtil.toBean(shopJson, Shop.class);
            return Result.ok(shop);
        }
        //shopJson 为 "" 的时候
        if (shopJson != null) {
            return Result.ok("店铺不存在");
        }
        // 4.不存在,根据id查询数据库
        Shop shop = getById(id);
        // 5.不存在,返回错误
        if (shop == null) {
             stringRedisTemplate.opsForValue().set(key, "",(2L + new Random().nextInt(5)), TimeUnit.MINUTES);
        }
        // 6.存在,写入redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop),30L, TimeUnit.MINUTES);
        // 7.返回
        return Result.ok(shop);
    }
  • 利用Redis集群提高服务的可用性

请看Redis集群配置的相关文章

  • 给缓存业务添加降级限流策略

这里请看SpringCloud中降极限流策略

  • 给业务添加多级缓存

这里请看SpringCloud中多级缓存的相关知识

缓存击穿

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无 数的请求访问会在瞬间给数据库带来巨大的冲击。

常见的解决方案有两种:

  • 互斥锁
  • 逻辑过期

逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此 时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时 候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数 据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数 据库代码,对数据库访问压力过大

 

解决方案一、使用锁来解决:

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

解决方案二、逻辑过期方案

方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。

这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。

进行对比

互斥锁方案:由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响

逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦

 利用互斥锁解决缓存击穿问题

核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询

如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿

操作锁的代码:

核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
    return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
    stringRedisTemplate.delete(key);
}

操作代码:

public Shop queryWithMutex(Long id)  {
        String key = CACHE_SHOP_KEY + id;
        // 1、从redis中查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get("key");
        // 2、判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        //判断命中的值是否是空值
        if (shopJson != null) {
            //返回一个错误信息
            return null;
        }
        // 4.实现缓存重构
        //4.1 获取互斥锁
        String lockKey = "lock:shop:" + id;
        Shop shop = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2 判断否获取成功
            if(!isLock){
                //4.3 失败,则休眠重试
                Thread.sleep(50);
                return queryWithMutex(id);
            }
            //4.4 成功,根据id查询数据库
             shop = getById(id);
            // 5.不存在,返回错误
            if(shop == null){
                 //将空值写入redis
                stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
                //返回错误信息
                return null;
            }
            //6.写入redis
            stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);

        }catch (Exception e){
            throw new RuntimeException(e);
        }
        finally {
            //7.释放互斥锁
            unlock(lockKey);
        }
        return shop;
    }

利用逻辑过期解决缓存击穿问题

需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题

思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

如果封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你

步骤一、

新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}

步骤二、

ShopServiceImpl 新增此方法,利用单元测试进行缓存预热

    private void saveShop2Redis(Long id, Long expireSeconds) {
        //1.查詢店鋪信息
        Shop shop = getById(id);
        //2.封裝逻辑过期时间
        RedisData redisData = new RedisData();
        redisData.setData(shop);
        redisData.setExpireSeconds(LocalDateTime.now().plusSeconds(expireSeconds));
        //3.写入Redis
        stringRedisTemplate.opsForValue().set("lock:" + id, JSONUtil.toJsonStr(redisData));
    }

 在测试类中

    @Test
    void test() {
        shopService.saveShop2Redis(1L,10L);
    }

步骤三:正式代码

ShopServiceImpl

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
    String key = CACHE_SHOP_KEY + id;
    // 1.从redis查询商铺缓存
    String json = stringRedisTemplate.opsForValue().get(key);
    // 2.判断是否存在
    if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
        return null;
    }
    // 4.命中,需要先把json反序列化为对象
    RedisData redisData = JSONUtil.toBean(json, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 5.判断是否过期
    if(expireTime.isAfter(LocalDateTime.now())) {
        // 5.1.未过期,直接返回店铺信息
        return shop;
    }
    // 5.2.已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean isLock = tryLock(lockKey);
    // 6.2.判断是否获取锁成功
    if (isLock){
        CACHE_REBUILD_EXECUTOR.submit( ()->{

            try{
                //重建缓存
                this.saveShop2Redis(id,20L);
            }catch (Exception e){
                throw new RuntimeException(e);
            }finally {
                unlock(lockKey);
            }
        });
    }
    // 6.4.返回过期的商铺信息
    return shop;
}

这期就到这里 , 下期再见 !

晚安 !

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/100480.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一体化数据安全平台 uDSP 获“金鼎奖”优秀金融科技解决方案奖

近日,2023 年中国国际金融展“金鼎奖”评选结果揭晓,原点安全打造的“一体化数据安全平台 uDSP”产品获评“金鼎奖”优秀金融科技解决方案奖。该产品目前已广泛应用于银行业、保险企业、证券、医疗、互联网、政务、在线教育等诸多领域。此次获奖再次印证…

ShardingSphere——压测实战

摘要 Apache ShardingSphere 关注于全链路压测场景下,数据库层面的解决方案。 将压测数据自动路由至用户指定的数据库,是 Apache ShardingSphere 影子库模块的主要设计目标。 一、压测背景 在基于微服务的分布式应用架构下,业务需要多个服…

vue3渲染函数h的简单使用——定义局部组件

vue3渲染函数h的简单使用 基本用法 创建 Vnodes Vue 提供了一个 h() 函数用于创建 vnodes: import { h } from vueconst vnode h(div, // type{ id: foo, class: bar }, // props[/* children */] )更多用法 详情查看官方文档 在SFC中定义局部组件使用 h函数…

Anaconda Prompt输入jupyter lab无反应

问题:Anaconda Prompt界面输入指令无反应 原因:公司电脑勒索病毒防御工具阻止了进程 解决:找到黑名单恢复进程

dvwa xss通关

反射型XSS通关 low难度 选择难度&#xff1a; 直接用下面JS代码尝试&#xff1a; <script>alert(/xss/)</script>通关成功&#xff1a; medium难度 直接下面代码尝试后失败 <script>alert(/xss/)</script>发现这段代码直接被输出&#xff1a; 尝试…

Leetcode Top 100 Liked Questions(序号141~189)

​ 141. Linked List Cycle ​ 题意&#xff1a;给你一个链表&#xff0c;判断链表有没有环 我的思路 两个指针&#xff0c;一个每次走两步&#xff0c;一个每次走一步&#xff0c;如果走两步的那个走到了NULL&#xff0c;那说明没有环&#xff0c;如果两个指针指向相等&…

Vue.js2+Cesium1.103.0 十、加载 Three.js

Vue.js2Cesium1.103.0 十、加载 Three.js Demo ThreeModel.vue <template><divid"three_container"class"three_container"/> </template><script> /* eslint-disable eqeqeq */ /* eslint-disable no-unused-vars */ /* eslint…

分享几个靠谱的网络项目,空闲时间就能月收益几千!

近几年来最大的感受就是赚钱越来越难了&#xff0c;对于上班族来说固定的那份工资比较有限&#xff0c;相信很多朋友们都想开拓一些副业&#xff0c;给自己增加一些收入&#xff0c;小编今天给大家推荐几个靠谱的最新项目分享给大家。 第一个&#xff1a;文案编辑 文案编辑是…

go语言--锁

锁的基础&#xff0c;go的锁是构建在原子操作和信号锁之上的 原子锁 原子包实现协程的对同一个数据的操作&#xff0c;可以实现原子操作&#xff0c;只能用于简单变量的简单操作&#xff0c;可以把多个操作变成一个操作 sema锁 也叫信号量锁/信号锁 核心是一个uint32值&#…

docker linux(centos 7) 安装

这是个目录 1:安装1:手动安装(适用于centos7)之一2:手动安装(适用于centos7)之二3&#xff1a;一键安装docker4:二进制安装1&#xff1a;下载二进制包2&#xff1a;解压3&#xff1a;移动文件4&#xff1a;后台运行docker5&#xff1a;测试 dicker命令表999&#xff1a;遇到的问…

学习JAVA打卡第四十九天

Random类 尽管可以使用math类调用static方法random&#xff08;&#xff09;返回一个0~1之间的随机数。&#xff08;包括0.0但不包括0.1&#xff09;&#xff0c;即随机数的取值范围是[0.0&#xff0c;1.0]的左闭右开区间。 例如&#xff0c;下列代码得到1&#xff5e;100之间…

OpenAI发布ChatGPT企业级版本

本周一&#xff08;2023年8月28日&#xff09;OpenAI 推出了 ChatGPT Enterprise&#xff0c;这是它在 4 月份推出的以业务为中心的订阅服务。该公司表示&#xff0c;根据新计划&#xff0c;不会使用任何业务数据或对话来训练其人工智能模型。 “我们的模型不会从你的使用情况中…

java基础-----第八篇

系列文章目录 文章目录 系列文章目录一、Java类加载器二、双亲委托模型 一、Java类加载器 JDK自带有三个类加载器&#xff1a;bootstrap ClassLoader、ExtClassLoader、AppClassLoader。 BootStrapClassLoader是ExtClassLoader的父类加载器&#xff0c;默认负责加载%JAVA_HOME…

视频剪辑音效处理软件有哪些?视频剪辑软件那个好用

音效是视频剪辑的重要部分&#xff0c;能起到画龙点睛的作用。在短视频平台中&#xff0c;一段出彩的音效能将原本平平无奇的视频变得生动有趣。那么&#xff0c;视频剪辑音效处理软件有哪些&#xff1f;本文会给大家介绍好用的音效处理软件&#xff0c;同时也会介绍视频剪辑音…

使用Arrays.asList生成的List集合,操作add方法报错

早上到公司&#xff0c;刚到工位&#xff0c;测试同事就跑来说"功能不行了&#xff0c;报服务器异常了&#xff0c;咋回事";我一脸蒙&#xff0c;早饭都顾不上吃&#xff0c;要来了测试账号复现了一下&#xff0c;然后仔细观察测试服务器日志&#xff0c;发现报了一个…

在Windows10上编译grpc工程,得到protoc.exe和grpc_cpp_plugin.exe

grpc是google于2015年发布的一款跨进程、跨语言、开源的RPC(远程过程调用)技术。使用C/S模式&#xff0c;在客户端、服务端共享一个protobuf二进制数据。在点对点通信、微服务、跨语言通信等领域应用很广&#xff0c;下面介绍grpc在windows10上编译&#xff0c;这里以编译grpc …

【分布式搜索引擎elasticsearch】

文章目录 1.elasticsearch基础索引和映射索引库操作索引库操作总结 文档操作文档操作总结 RestAPIRestClient操作文档 1.elasticsearch基础 什么是elasticsearch&#xff1f; 一个开源的分布式搜索引擎&#xff0c;可以用来实现搜索、日志统计、分析、系统监控等功能 什么是…

【算法竞赛宝典】查找子串

【算法竞赛宝典】查找子串 题目描述代码展示代码讲解 题目描述 代码展示 //查找子串 #include <iostream>#define N 100 using namespace std;int main() {freopen("findchar.in", "r", stdin);freopen("findchar.out", "w", s…

openpyxl: Value must be either numerical or a string containing a wildcard

使用 openpyxl库解析excel表格时遇到如图问题&#xff1a; 后排查在其他电脑上相同的py脚本&#xff0c;相同的excel文件&#xff0c;程序正常; 通过 pip show openyxl 检查发现两者的 openyxl 版本有差异&#xff0c;有问题的是 3.1.2 没问题的是 3.0.10 解决办法&#xff1a…

定位与轨迹-百度鹰眼轨迹开放平台-学习笔记

1. 百度鹰眼轨迹的主要功能接口 百度的鹰眼轨迹平台&#xff0c;根据使用场景不同&#xff0c;提供了web端、安卓端等各种类型的API与SDK&#xff0c;本文章以web端API为例&#xff0c;介绍鹰眼轨迹的使用。 2. API使用前的准备 使用鹰眼轨迹API&#xff0c;需要两把钥匙&…