java八股文面试[多线程]——线程间通信方式

多个线程在并发执行的时候,他们在CPU中是随机切换执行的,这个时候我们想多个线程一起来完成一件任务,这个时候我们就需要线程之间的通信了,多个线程一起来完成一个任务,线程通信一般有4种方式:

通过 volatile 关键字
通过 Object类的 wait/notify 方法
通过 condition 的 await/signal 方法
通过 join 的方式

现在有一个问题,两个线程分别打印字符串,但是当线程A每输出两次的时候,线程B就输出一次,如此反复10次。

通过 volatile 关键字

通过 volatile 关键字来实现这个任务,这个也是最简单的一种实现方式,大致思路 volatile 是共享内存的,两个线程共享一个标志位,当标志位更改的时候就执行不同的线程
 

public class VolatileDemo {
    private static volatile boolean flag = true;  //定义一个标志位,当标志位更改的时候不同的线程被执行

    public static void main(String[] args) {
        //线程A启动
        new Thread(() -> {
            int i = 0;
            while(true){  //进行死循环,一直输出语句
                if (flag){  //对标志位的判断,符合就执行
                    System.out.println(Thread.currentThread().getName()+" ===>" + ++i); //输出语句
                    if (i%2==0){  //如果语句输出两次了 改变标志位
                        flag  =false;
                    }
                    if (i == 10) break;  //到达十次,结束循环
                }
            }
        }, "A").start();
        new Thread(() -> {
            int i = 0;
            while(true){
                if (!flag){  //判断条件不一样
                    System.out.println(Thread.currentThread().getName()+" 被唤醒啦 " + ++i);
                    flag  = true;  //改变标志位
                    if (i == 5) break;
                }
            }
        }, "B").start();
    }
}

我们发现我们这个位置用的while循环的,用for循环指定次数可以吗,是不可以的,因为我们只是改变了标志位,但是并没有立刻唤醒另外一个线程让他执行,虽然我打印的语句是我被唤醒了,但是实际上只是线程A处于死循环,啥子也不做,直到线程B抢到了时间片,进行对标志位的判断,然后输出语句,在进行空循环,等待A抢到时间片,如此反复,可以自己在if判断外面加一条计数语句,来验证一下结果,如果想要立刻唤醒的话,那么就是另外一种方法啦。

通过 Object类的 wait/notify 方法

对于上面的volatile关键字这个方法来说,我们的线程执行了很多次空循环,来等待另外一个线程来获取锁,这种操作无疑是十分消耗CPU的资源的,所以说为了解决这种情况,我们就需要一种机制可以实现线程之间的通信,可以唤醒其他的线程,而不是等待直到自己获取CPU的时间片,我们都知道,Object类提供了三个线程间通信的方法,wait(),notify(),notifyAll()。这三个方法必须都在同步代码块中执行的

方法名具体操作
wait()wait()方法执行前,是必须要获得对应的锁的,当执行wait()方法后,线程就会释放掉自己所占有的锁,释放CPU,然后进入阻塞状态,直到被notify()方法唤醒。
notify()会唤醒一个处于等待该对象锁的线程,然后继续往下执行,直到执行完退出对象锁锁住的区域(synchronized修饰的代码块)后再释放锁。
notifyAll()和notify()方法差不多,只不过他是唤醒所有等待该对象锁的线程,让他们进入就绪队列,但是谁执行就看谁抢占到CPU,notify()方法也是这样,只不过是唤醒随机的一个而已

每个锁对象都有两个队列,一个是就绪队列,一个是阻塞队列。就绪队列存储了已就绪(将要竞争锁)的线程,阻塞队列存储了被阻塞的线程。当一个阻塞线程被唤醒后,才会进入就绪队列,进而等待CPU的调度;反之,当一个线程被wait后,就会进入阻塞队列,等待被唤醒。

public class WaitAndNotify {
    public static void main(String[] args) {
        Object lock = new Object();  //创建一个锁对象
        new Thread(() -> {
            for (int i = 1; i <= 10; i++) {
                synchronized (lock) {  //首先需要获取锁
                    System.out.println(Thread.currentThread().getName() + " ==> " + i);
                    if (i % 2 == 0) {
                        lock.notify();  //唤醒线程B
                        if (i!=10){
                            try {
                                lock.wait();  //让自己等待
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }
        }, "A").start();
        new Thread(() -> {
            for (int i = 1; i <= 5; i++) {
                synchronized (lock) {
                    lock.notify();  //我们看到,执行notify方法时,后面的代码还是执行了,并不是立刻释放资源
                    System.out.println(Thread.currentThread().getName() + "我执行了notify方法 " + i);
                    if (i!=5){
                        try {
                            lock.wait();
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        }
                    }
                }
            }
        }, "B").start();
    }
}

通过上面的代码我们发现,当执行notify方法时,我们并不会立刻释放锁资源,而是在执行完我们代码块里面的内容时才会释放掉锁资源,而wait()方法则会立刻释放掉锁资源,进入阻塞状态,这里我们有举例子,可以自己在wait()方法后面加上一个输出语句。我们进行交替通信的规则就是,执行wait()方法,释放掉锁资源,然后执行 notify() 方法,唤醒其他的线程,在代码中,我在wait()方法上加了一个判断,如果是最后一次的话,那么我就不执行,为什么,因为我在执行wait()方法的时候,那么线程除非被唤醒,否则就会一直阻塞,这样的话我们的demo就不可以结束了,一直处于允许状态。

通过 condition 的 await/signal 方法

Condiction对象是通过lock对象来创建得(调用lock对象的newCondition()方法),他在使用前也是需要获取锁得,其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。Condiction对象得常用方法:

await() : 线程自主释放锁,进入沉睡状态,直到被再次唤醒。
await(long time, TimeUnit unit) :线程自主释放锁,进入沉睡状态,被唤醒或者未到达等待时间时一直处于等待状态。
signal(): 唤醒一个等待线程。
signal()All() :唤醒所有等待线程,能够从等待方法返回的线程必须获得与Condition相关的锁。

    public static void main(String[] args) {
        //设置一个锁
        Lock lock = new ReentrantLock();
        Condition condition = lock.newCondition();
        AtomicInteger number = new AtomicInteger(1);
        AtomicInteger count = new AtomicInteger(1);
        new Thread(()->{
            while (count.get() != 10){
                lock.lock();
                try {
                    count.getAndIncrement();
                    if (number.get() != 1 && count.get() != 11){
                        condition.await();
                    }
                    number.getAndIncrement();
                    System.out.println(Thread.currentThread().getName() + "---> 生产");
                    condition.signalAll();
                }catch (Exception e){
                    e.printStackTrace();
                }finally {
                    lock.unlock();
                }
            }
        },"producter").start();
        new Thread(()->{
            while (count.get() != 10 ){
                lock.lock();
                try {
                    count.getAndIncrement();
                    if (number.get() != 2 && count.get() != 11){
                        condition.await();
                    }
                    number.getAndDecrement();
                    System.out.println(Thread.currentThread().getName() + "---> 消费");
                    condition.signalAll();
                }catch (Exception e){
                    e.printStackTrace();
                }finally {
                    lock.unlock();
                }
            }
        },"customer").start();
    }

await操作会立刻释放掉锁,进入阻塞状态,singal会唤醒等待队列中的头节点(失败就依次唤醒)。这个代码逻辑有大问题,只是这样写看得出数据之间的交换即可。注意点:代码一定要在lock和unlock之间

通过 join 方法来实现线程通信
    public static void main(String[] args) throws InterruptedException {
        Thread A = new Thread(() -> {
            System.out.println("执行完毕");
        },"A");
        Thread B = new Thread(()->{
            try {
                Thread.sleep(1000L);
                System.out.println(Thread.currentThread().getName() + "测试join");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            },"B");
        A.start();
        B.start();
        B.join();
        System.out.println("Main线程");
    }

简单来说,就是join方法会让自己提前执行,比如上面的例子中就是让Main线程阻塞了,等待B线程执行完毕后才会执行。本质就是调用了wait方法,让当前线程阻塞,直到另一个线程执行完毕。(当前线程wait后,执行join方法的线程大概率抢到锁资源,而且当一个线程执行完毕后,会默认调用notifyAll方法。)

小结
其实准确来说,应该只有三种可以通信的方式,join只是让当前线程先执行完,并没有说根据两个线程之间数据的共享

线程之间的通信方式主要有以下几种:


共享变量:线程之间可以通过共享变量来进行通信。不同的线程可以共享同一个变量,并在变量上进行读写操作。需要注意的是,共享变量可能会引发线程安全问题,需要通过同步机制来确保线程安全。

锁机制:锁机制是一种常用的线程同步机制,可以保证在同一时间只有一个线程能够访问共享资源。Java提供了多种锁类型,如 synchronized 关键字、ReentrantLock 类等。

条件变量:条件变量是一种线程间通信机制,它用于在一个共享资源上等待某个条件的成立。Java 提供了 Condition 接口来支持条件变量的实现,在使用 Condition 时需要先获取锁,然后调用 await() 方法等待条件成立,当条件成立时可以通过 signal() 或 signalAll() 方法唤醒等待该条件的线程。

信号量:信号量是一种常见的线程同步机制,可用于控制多个线程对共享资源的访问。Java 提供了 Semaphore 类来实现信号量,Semaphore 类有两个常用的方法 acquire() 和 release(),分别用于获取和释放信号量。

管道:管道是一种用于线程间通信的高级机制,它可以实现一个线程向另一个线程传送数据。Java 提供了 PipedInputStream PipedOutputStream 两个类来支持管道的实现,其中 PipedInputStream 用于读取数据,PipedOutputStream 用于写入数据。

需要注意的是,以上通信方式都需要在多线程程序中谨慎使用,需要考虑线程安全和性能等方面的问题。为了确保程序正确、高效地运行,需要根据具体情况选择合适的线程通信方式,并进行相应的测试和优化。

具体的示例
共享变量
public class SharedData {
    private int value;
    public synchronized int getValue() { 
        return value; 
    }
    public synchronized void setValue(int value) { 
        this.value = value; 
    }
}

   在这个示例中,定义了一个共享数据类 SharedData,其中包含一个整型变量 value 和两个同步方法 getValue() 和 setValue(),用于获取和设置变量的值。由于这两个方法都是同步的,因此多个线程可以安全地访问该变量。

public class SharedDataExample {
    public static void main(String[] args) throws InterruptedException {
        SharedData sharedData = new SharedData();
        Thread thread1 = new Thread(() -> {
            for (int i = 0; i < 10; i++) {
                sharedData.setValue(i);
                System.out.println(Thread.currentThread().getName() + " write " + sharedData.getValue());
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        Thread thread2 = new Thread(() -> {
            for (int i = 0; i < 10; i++) {
                System.out.println(Thread.currentThread().getName() + " read " + sharedData.getValue());
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        thread1.start();
        thread2.start();
        thread1.join();
        thread2.join();
    }
}

在这个示例中,创建了两个线程分别用于读写共享数据 SharedData,多次执行该示例可以看到控制台输出表明两个线程在安全地访问共享变量。

锁机制
public class LockExample {
    private static Lock lock = new ReentrantLock();
    private static int count = 0;
    private static void increase() {
        lock.lock();
        try {
            count++;
        } finally {
            lock.unlock();
        }
    }
    public static void main(String[] args) throws InterruptedException {
        Thread thread1 = new Thread(() -> {
            for (int i = 0; i < 10000; i++) {
                increase();
            }
        });
        Thread thread2 = new Thread(() -> {
            for (int i = 0; i < 10000; i++) {
                increase();
            }
        });
        thread1.start();
        thread2.start();
        thread1.join();
        thread2.join();
        System.out.println(count);
    }
}

在这个示例中,使用了 Lock 接口和 ReentrantLock 类来对计数器进行同步,多次执行该示例可以看到最终输出的计数器值为 20000。

信号量
public class SemaphoreExample {
    private static Semaphore semaphore = new Semaphore(2);
    private static void doWork() throws InterruptedException {
        semaphore.acquire();
        System.out.println(Thread.currentThread().getName() + " start working");
        Thread.sleep(1000);
        System.out.println(Thread.currentThread().getName() + " finish working");
        semaphore.release();
    }
    public static void main(String[] args) throws InterruptedException {
        Thread thread1 = new Thread(() -> {
            try {
                doWork();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        Thread thread2 = new Thread(() -> {
            try {
                doWork();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        Thread thread3 = new Thread(() -> {
            try {
                doWork();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        thread1.start();
        thread2.start();
        thread3.start();
        thread1.join();
        thread2.join();
        thread3.join();
    }
}

  在这个示例中,使用了 Semaphore 类来定义了一个信号量,线程1、线程2、线程3都需要获取信号量才能进行工作,每次执行 doWork() 方法需要占用资源,执行完毕后释放信号量。

管道
public class PipeExample {
    static class WriterThread extends Thread {
        private PipedOutputStream output;
        WriterThread(PipedOutputStream output) {
            this.output = output;
        }
        @Override
        public void run() {
            try {
                for(int i=1;i<=10;i++) {
                    output.write(i);
                    System.out.println("写入数据:" + i);
                    Thread.sleep(1000);
                }
            } catch(Exception e) {
                e.printStackTrace();
            } finally {
                try {
                    output.close();
                } catch(Exception e) {
                    e.printStackTrace();
                }
            }
        }
    }
    static class ReaderThread extends Thread {
        private PipedInputStream input;
        ReaderThread(PipedInputStream input) {
            this.input = input;
        }
        @Override
        public void run() {
            try {
                int value;
                while((value=input.read()) != -1) {
                    System.out.println("读取数据:" + value);
                }
            } catch(Exception e) {
                e.printStackTrace();
            } finally {
                try {
                    input.close();
                } catch(Exception e) {
                    e.printStackTrace();
                }
            }
        }
    }
    public static void main(String[] args) throws IOException {
        PipedOutputStream output = new PipedOutputStream();
        PipedInputStream input = new PipedInputStream(output);
        Thread thread1 = new WriterThread(output);
        Thread thread2 = new ReaderThread(input);
        thread1.start();
        thread2.start();
        try {
            thread1.join();
            thread2.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

在这个示例中,使用了 PipedOutputStream 类和 PipedInputStream 类来定义了一个管道,线程1向管道中写入数据,线程2从管道中读取数据,通过管道来实现两个线程之间的通信。

知识来源:

【23版面试突击】 在Java中线程间有哪些通信方式?_哔哩哔哩_bilibili

线程通信的四种方式_我是哎呀呀的博客-CSDN博客

Java线程之间如何通信的,有哪些方式?_java线程间通信的几种方法_Ascend1797的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/100230.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

解决Linux Ubuntu上安装RabbitMQ服务后的公网远程访问问题,借助cpolar内网穿透技术

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…

哈夫曼树与哈夫曼编码

哈夫曼树与哈夫曼编码 哈夫曼树 哈夫曼树又称最优二叉树&#xff0c;这种数据结构主要用于解决一些编码问题&#xff0c;与普通二叉树相比&#xff0c;哈夫曼树在特定场景下能够显著的提高效率。 相关概念 权值&#xff1a;指哈夫曼树叶子节点的权值&#xff0c;例如上图中哈…

07:STM32----ADC模数转化器

目录 1:简历 2:逐次逼近型ADC 3:ADC基本结构 4:输入通道 5:规则组的4种转换模式 1:单次转化,非扫描模式 2:连续转化,非扫描模式 3:单次转化,扫描模式 4:单次转化,扫描模式 6:触发控制 7:数据对齐 8:转化时间 9:校准 10:ADC的硬件电路 A: AD单通道 1:连接图 2:函…

计算机竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录 0 简介1 二维码检测2 算法实现流程3 特征提取4 特征分类5 后处理6 代码实现5 最后 0 简介 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉 该项目较为新颖&#xff0c;适合作为竞赛课…

【多线程案例】单例模式(懒汉模式和饿汉模式)

文章目录 1. 什么是单例模式&#xff1f;2. 立即加载/“饿汉模式”3. 延时加载/“懒汉模式”3.1 第一版3.2 第二版3.3 第三版3.4 第四版 1. 什么是单例模式&#xff1f; 提起单例模式&#xff0c;就必须介绍设计模式&#xff0c;而设计模式就是在软件设计中&#xff0c;针对特殊…

6路液体水位检测芯片VK36W6D SOP16 抗电源干扰及手机干扰特性好

产品品牌&#xff1a;永嘉微电/VINKA 产品型号&#xff1a;VK36W6D 封装形式&#xff1a;SOP16/QFN16L 详细资料&#xff1a;13.5/5.474/4.703 概述 VK36W6D具有6个触摸检测通道&#xff0c;可用来检测6个点的水位。该芯片具有较高的集成度&#xff0c;仅需极少的外部组件便…

一文了解tcp/ip协议的运行原理

接触代理ip的人都了解https/sock5等ip协议&#xff0c;那么TCP/IP 协议又是什么&#xff1f; 一、什么是TCP/IP 协议&#xff1f; TCP/IP 协议实际上是一系列网络通信协议的一个统称&#xff0c;他负责具体的数据传输工作&#xff0c;核心的两个协议包括TCP以及IP&#xff0c…

25.选择排序,归并排序,基数排序

目录 一. 选择排序 &#xff08;1&#xff09;简单选择排序 &#xff08;2&#xff09;堆排序 二. 归并排序 三. 基数排序 四. 各种排序方法的比较 &#xff08;1&#xff09;时间性能 &#xff08;2&#xff09;空间性能 &#xff08;3&#xff09;排序方法的稳定性能…

美创科技获通信网络安全服务能力评定(应急响应一级)认证!

近日&#xff0c;中国通信企业协会公布通信网络安全服务能力评定2023年第一批获证企业名单。 美创科技获得应急响应一级资质&#xff0c;成为2023年第一批获证企业之一&#xff01; 通信网络安全服务能力评定是对通信网络安全服务单位从事通信网络安全服务综合能力的评定&#…

Revit SDK 介绍:CreateAirHandler 创建户式风管机

前言 这个例子介绍如何通过 API 创建一个户式风管机族的内容&#xff0c;包含几何和接头。 内容 效果 核心逻辑 必须打开机械设备的族模板创建几何实体来表示风管机创建风机的接头 创建几何实体来表示风管机 例子中创建了多个拉伸&#xff0c;下面仅截取一段代码&#xff…

python爬虫—requests

一、安装 pip install requests 二、基本使用 1、基本使用 类型 &#xff1a; models.Response r.text : 获取网站源码 r.encoding &#xff1a;访问或定制编码方式 r.url &#xff1a;获取请求的 url r.content &#xff1a;响应的字节类型 r.status_code &#xff1a;响应…

山西省文物局与大势智慧签订战略合作协议

8月24日&#xff0c;由山西省文物局、中国文物信息咨询中心(国家文物局数据中心)主办的数字文博发展论坛在太原举行。武汉大势智慧科技有限公司&#xff08;后简称“大势智慧”&#xff09;受邀参与&#xff0c;与来自国内文博数字化领域的专家学者齐聚一堂&#xff0c;围绕“数…

什么是同源策略(same-origin policy)?它对AJAX有什么影响?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 同源策略&#xff08;Same-Origin Policy&#xff09;与 AJAX 影响⭐ 同源策略的限制⭐ AJAX 请求受同源策略影响⭐ 跨域资源共享&#xff08;CORS&#xff09;⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记…

K 次取反后最大化的数组和【贪心算法】

1005 . K 次取反后最大化的数组和 给你一个整数数组 nums 和一个整数 k &#xff0c;按以下方法修改该数组&#xff1a; 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后&#xff0c;返回数组 可能…

02_nodejs开发环境安装

02 【nodejs开发环境安装】 1.版本介绍 在命令窗口中输入 node -v 可以查看版本0.x 完全不技术 ES64.x 部分支持 ES6 特性5.x 部分支持ES6特性&#xff08;比4.x多些&#xff09;&#xff0c;属于过渡产品&#xff0c;现在来说应该没有什么理由去用这个了6.x 支持98%的 ES6 特…

zabbix安装部署

前期准备&#xff1a;安装mysql数据库和nginx 一、下载zabbix rpm -Uvh https://repo.zabbix.com/zabbix/4.4/rhel/7/x86_64/zabbix-release-4.4-1.el7.noarch.rpm yum-config-manager --enable rhel-7-server-optional-rpms yum install epel-release numactl yum install…

Metasploit“MSF”连接postgresql时因排序规则版本不匹配导致无法连接

一、问题 更新Kali之后使用Metasploit时出现一个问题&#xff0c;连接postgresql时因排序规则版本不匹配导致无法连接 警告: database "msf" has a collation version mismatch DETAIL: The database was created using collation version 2.36, but the operati…

Linux操作系统中的信号剖析,

1、前言 信号是一种信息载体&#xff0c;在现实中&#xff0c;信号就是表示消息的物理量&#xff0c;比如说红绿灯&#xff0c;古时候狼烟等等&#xff0c;就拿红绿灯来说&#xff0c;为什人和车辆都是看到绿灯才会通行&#xff0c;红灯亮了就要停下来&#xff0c;因为这是现实…

Dolphin for Mac(Wii游戏模拟器)配置指南

Wii模拟器Dolphin Mac是款适合Mac电脑中的游戏玩家们使用的模拟器工具。Wii模拟器Dolphin Mac官方版支持直接运行游戏镜像文件&#xff0c;玩家可以将游戏ISO拷贝到某一个文件夹中统一进行管理。Wii模拟器Dolphin Mac除了键盘和鼠标外&#xff0c;还支持配合原版的Wii遥控器操作…

1、[春秋云镜]CVE-2022-32991

文章目录 一、相关信息二、解题思路&#xff08;手注&#xff09;三、通关思路&#xff08;sqlmap&#xff09; 一、相关信息 靶场提示&#xff1a;该CMS的welcome.php中存在SQL注入攻击。 NVD关于漏洞的描述&#xff1a; 注入点不仅在eid处&#xff01;&#xff01;&#xff…